Computes a ‘combined forecast’ from a pool of individual model forecasts using trimmed mean at each point in time.

comb_TA(x, trim_factor = NULL, criterion = "RMSE")

Arguments

x

An object of class foreccomb. Contains training set (actual values + matrix of model forecasts) and optionally a test set.

trim_factor

numeric. Must be between 0 (simple average) and 0.5 (median).

criterion

If trim_factor is not specified, an optimization criterion for automated trimming needs to be defined. One of "MAE", "MAPE", or "RMSE" (default).

Value

Returns an object of class foreccomb_res with the following components:

Method

Returns the used forecast combination method.

Models

Returns the individual input models that were used for the forecast combinations.

Weights

Returns the combination weights obtained by applying the combination method to the training set.

Trim Factor

Returns the trim factor, \(\lambda\).

Fitted

Returns the fitted values of the combination method for the training set.

Accuracy_Train

Returns range of summary measures of the forecast accuracy for the training set.

Forecasts_Test

Returns forecasts produced by the combination method for the test set. Only returned if input included a forecast matrix for the test set.

Accuracy_Test

Returns range of summary measures of the forecast accuracy for the test set. Only returned if input included a forecast matrix and a vector of actual values for the test set.

Input_Data

Returns the data forwarded to the method.

Details

Suppose \(y_t\) is the variable of interest, there are \(N\) not perfectly collinear predictors, \(\mathbf{f}_t = (f_{1t}, \ldots, f_{Nt})'\). For each point in time, the order forecasts are computed:

$$\mathbf{f}_t^{ord} = (f_{(1)t}, \ldots, f_{(N)t})'$$

Using a trim factor \(\lambda\) (i.e., the top/bottom \(\lambda \%\) are trimmed) the combined forecast is calculated as:

$$\hat{y}_t = \frac{1}{N(1-2\lambda)} \sum_{i = \lambda N +1}^{(1-\lambda)N} f_{(i)t}$$

The trimmed mean is an interpolation between the simple average and the median. It is an appealing simple, rank-based combination method that is less sensitive to outliers than the simple average approach, and has been proposed by authors such as Armstrong (2001), Stock and Watson (2004), and Jose and Winkler (2008).

This method allows the user to select \(\lambda\) (by specifying trim_factor), or to leave the selection to an optimization algorithm -- in which case the optimization criterion has to be selected (one of "MAE", "MAPE", or "RMSE").

References

Armstrong, J. S. (2001). Combining Forecasts. In: Armstrong, J. S. (Ed.), Principles of Forecasting. Springer, Boston, MA, 417--439.

Jose, V. R. R., and Winkler, R. L. (2008). Simple Robust Averages of Forecasts: Some Empirical Results. International Journal of Forecasting, 24(1), 163--169.

Stock, J. H., and Watson, M. W. (2004). Combination Forecasts of Output Growth in a Seven-Country Data Set. Journal of Forecasting, 23(6), 405--430.

Author

Christoph E. Weiss and Gernot R. Roetzer

Examples

obs <- rnorm(100)
preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]
train_p<-preds[1:80,]
test_o<-obs[81:100]
test_p<-preds[81:100,]

## User-selected trim factor:
data<-foreccomb(train_o, train_p, test_o, test_p)
comb_TA(data, trim_factor=0.1)
#> $Method
#> [1] "Trimmed Mean"
#> 
#> $Models
#>  [1] "Series 1"  "Series 2"  "Series 3"  "Series 4"  "Series 5"  "Series 6" 
#>  [7] "Series 7"  "Series 8"  "Series 9"  "Series 10"
#> 
#> $Fitted
#> Time Series:
#> Start = 1 
#> End = 80 
#> Frequency = 1 
#>  [1] 0.7863893 0.8585404 1.3960043 1.3771952 0.6831947 1.6795665 0.4239114
#>  [8] 0.9787793 1.2181581 0.5742269 0.9609709 1.1702420 0.8872245 0.8189316
#> [15] 1.0322312 1.0766203 1.3357293 1.4699081 0.9488401 0.6332017 0.8167393
#> [22] 0.8075260 0.5934076 0.9694834 1.1770592 1.3832520 1.2140475 0.7646082
#> [29] 0.7026527 0.7649137 1.6911155 0.9950730 0.2576139 1.3492794 1.0435063
#> [36] 0.5719704 1.0444462 1.1249526 1.2013032 1.1462020 1.0718216 1.0221110
#> [43] 0.8293090 1.0349669 1.0466667 0.9009279 1.4202057 0.3935386 1.1622479
#> [50] 1.3366454 0.6557590 1.4577674 1.7520839 1.2507431 1.2156300 1.5954632
#> [57] 1.0429295 1.0825666 0.7452150 1.2418222 0.7020988 0.4429308 1.0123801
#> [64] 0.8336380 0.8839146 0.5747614 0.6265187 1.1114676 0.8397330 0.4537635
#> [71] 1.0258513 0.8785424 1.1667536 0.9055352 0.8595829 1.0343174 1.5303992
#> [78] 0.7558269 0.6254657 1.2505830
#> 
#> $Accuracy_Train
#>                 ME     RMSE      MAE      MPE     MAPE       ACF1 Theil's U
#> Test set -1.029504 1.329265 1.129074 163.2342 329.7964 -0.1182428  1.966694
#> 
#> $Input_Data
#> $Input_Data$Actual_Train
#> Time Series:
#> Start = 1 
#> End = 80 
#> Frequency = 1 
#>  [1] -1.12023850  0.72812842 -1.22469330  0.80575706 -0.55979953 -0.35669315
#>  [7] -1.49320292 -0.53923261  0.85872649 -1.00745112 -0.92233675  0.30379526
#> [13]  0.33000396 -0.80832967 -0.91868667 -0.26527531  1.03099672 -0.68352448
#> [19] -0.22649681  0.16996093 -0.72686555  0.78154113 -0.25901027 -0.51562993
#> [25]  0.35920891 -0.65506209  0.82451908 -2.24258789  0.92700850 -0.32961858
#> [31]  1.07310626  2.09001176 -0.78025595  0.95939569  0.76098539  0.37805308
#> [37]  0.49713458 -0.71677396  0.29118541 -1.31751275  0.98550032  0.82547334
#> [43] -0.90122912 -0.78791398  1.88151833  0.61894917 -0.76548873 -0.77354096
#> [49] -0.06727977  0.22156782  0.68812811  0.18016857  1.31596181  0.21298099
#> [55]  0.69276192 -0.02661631  0.20092330 -0.25920385 -1.18162464 -0.25328611
#> [61] -1.27922444  0.53499682  0.46395551 -0.83119159  0.39662959  1.27430483
#> [67] -0.56857131 -0.52702374 -0.64121262 -0.91254018 -0.07632995  0.06933154
#> [73]  0.24768030  0.14998107  1.86426491  0.92171508 -1.02865530 -0.31774937
#> [79]  0.16147636 -0.86861669
#> 
#> $Input_Data$Forecasts_Train
#> Time Series:
#> Start = 1 
#> End = 80 
#> Frequency = 1 
#>       Series 1    Series 2     Series 3      Series 4    Series 5    Series 6
#>  1  1.67366932  0.03234905  1.102684857  2.5151592147  0.17008888 -0.40089345
#>  2  0.67997396  0.81701758  0.721478669  0.4618385970  0.70297031  0.43483948
#>  3  0.61337785  2.42278558  2.281219274  2.4685726548  0.79145165  0.61657268
#>  4  2.92423726  0.56668637 -0.785104024  2.8435568233  2.01475814  1.13178825
#>  5  1.59018091  2.27592162 -1.056482607  0.8681924321  0.21043983  0.03313741
#>  6  2.25251154  2.68066796  0.352650355  1.9579250613  1.09485218  1.03387859
#>  7  0.62446091  0.08436869  1.024385493  0.3833482992 -1.90610738  0.28176486
#>  8  0.46801665  1.69599387  0.452534954  2.2938156748  1.23672743 -1.32292469
#>  9  1.93755565 -1.12552096 -0.066994783  2.3045306766  3.09818648  0.97566103
#> 10  0.24862630 -0.40630228  0.532573537  1.7639029999  2.59406122  0.74834723
#> 11 -0.13453965 -0.63299655  1.387970369  0.8748380187  1.96860617 -0.37242917
#> 12  1.97224430 -0.49837354  0.879561850  1.7258584986 -0.06693445  1.71688767
#> 13  1.38299761  0.08617128  1.184151330 -0.2546572631  1.01686285  0.70988191
#> 14  0.78296746 -0.45539420  1.800746192  2.6168234105  0.63798745  0.67517631
#> 15  0.17597094  1.66844942  1.696938871 -0.1140685981  0.25387432 -1.43520246
#> 16  1.98517980  1.13480347  1.896975699  1.5071647308 -0.22963857  0.65760577
#> 17  0.99758654  2.48110602  3.313796972  0.0142234260  0.61736808  2.10227863
#> 18  0.87433193  2.19418763  1.700283976  2.1215480977  1.40557149 -0.05062992
#> 19  0.38505774  0.73978795  1.361441744  2.1507580810  0.12765418  1.05855288
#> 20  0.97483258 -0.15859133 -0.774914712  0.9346792361  1.09731305  0.22534059
#> 21  1.05214845  1.68226533  0.842714576  1.0823548325  1.56730658  0.95482448
#> 22 -0.06648854  0.52508544 -0.075750449  1.9902233761  1.12132279  1.51240807
#> 23  1.65829632  0.02005035 -0.302100942  1.6980403922  0.74772671 -0.44276646
#> 24 -0.13099495  1.60218975  0.166360774  2.1457288410 -0.52106847  2.18246138
#> 25  0.47163128  2.29858293 -0.298526483  0.5866604446  0.81769405  1.86189457
#> 26  1.78429447  0.98517710  2.854852533  1.2709174661 -0.32584228  0.47187518
#> 27  0.39481217  2.00487649  0.546468353  0.9952090628 -1.47207258  1.66308098
#> 28 -0.59921201  1.70129722  1.249990240  1.2037998077 -0.10250556  1.14991191
#> 29  0.85188814  2.42415145  2.366528446  1.2336084982 -0.20598172  0.69574184
#> 30  1.67493620  2.21215307  0.049483919  0.4822264290  0.84830192 -0.26277279
#> 31  0.93990608  1.33605518  0.138540049  1.0756345920  1.82029290  2.83592479
#> 32  2.37813880  1.73391059 -0.099409798  0.7804419606 -0.47370896  0.24012272
#> 33  0.02160552  0.32725434  0.799484413  0.3469453258 -0.41978943  1.44744894
#> 34  1.17534733  1.54575066  1.175986731  1.6211466000  1.47690540  0.47522554
#> 35  0.86541870  1.32876630  1.442959352  0.7458088494  0.65135642  1.82257751
#> 36  0.62657059  0.62827487  0.823734417  0.3285104828  0.22768478  0.80822550
#> 37  0.32509329  1.54194372 -0.290711683  1.4988684434  0.68207974  1.21177882
#> 38  1.78274447  1.60304233  1.295246916  0.0792628726  0.80860760  1.98117669
#> 39  1.61494497  1.20437204  1.676364715  0.6490247992 -0.15718040  1.49856900
#> 40  1.06287945  1.64309393  1.515547172 -0.7583774906  1.86130770  1.09385489
#> 41  0.41703833 -0.03414989  0.049508475  2.4385709498  3.12473426  0.96434352
#> 42  1.33556044  0.91561583  1.911637179  1.5186354681 -0.07777555  0.98893394
#> 43 -2.37646562  3.01172735  0.330554980  1.0505735665  0.38725857 -0.46200888
#> 44  1.14101201  0.11712143  0.836109393  2.4358637735  0.82087078 -0.04694651
#> 45  1.15701789  0.46698143  0.467913548  2.0566592454  1.70188751  1.83137561
#> 46  0.76208415  2.58505391  1.814709975  1.5914550443  0.19140828  1.54980184
#> 47  1.98379728  0.88502854  2.283488446  1.0081638912  2.43310911  2.72968791
#> 48  0.40599280 -0.58797717 -0.697303929  0.4837331523  1.88319566  2.00455677
#> 49  0.84045810  2.05672207  1.402257510 -0.5960420009  1.32177428 -0.34158575
#> 50  1.41396422  2.80234550  2.117110603  0.7227669538  2.38376397  1.46096556
#> 51  0.07104548  2.33565298 -0.779811958  0.6089289223  0.15849831  1.08255150
#> 52  0.90706273  1.93585060  0.587934960  1.5096274837  1.52348959  0.80293423
#> 53  3.27507175  1.66695230  0.533642112  1.8535018418  2.91706620 -0.46539695
#> 54  2.30770959  2.05527975  2.614276899  1.8668891006 -0.42578832 -0.54837246
#> 55  1.93205891  1.69310459  0.594401032  2.9257926775  1.58705697  1.45612091
#> 56  1.96244409  1.76406793  2.523654745  0.8175925352  1.10436711  1.59682732
#> 57  1.33693888  1.56460533  1.075137103 -0.8509415011  2.33975861  1.47008601
#> 58 -0.18177473  0.45288698  2.307065171  1.3980063472  0.21060218  2.09989528
#> 59  0.26618109 -0.42816114  2.422462716  1.5578083664 -0.19733639  0.59669296
#> 60  0.63665050  0.68637264 -0.034247027  2.6973440728  0.70778524  1.06699509
#> 61  0.53838099  1.16831184  0.357739312  0.4484154147 -0.31992478  0.56405267
#> 62 -0.39659895 -0.23171518  0.084855495 -0.6075298297  0.76969478 -0.40833533
#> 63  2.17893789  1.10841232  0.557768774  2.9958100538 -0.31881699  0.87357931
#> 64  1.69852004  1.07098358 -0.156778015  0.7217591349  2.31806573  0.51856383
#> 65  1.10438536  0.46358294 -0.177649425 -0.5627568123  1.19518256  1.19465503
#> 66 -0.60823744  0.63678182 -0.129922881  3.5009086798  0.63971230  0.70213496
#> 67  1.28981184  0.28621699  0.364951490  1.7562429765 -0.01850383  1.94078573
#> 68  2.23888918 -1.72828459  1.174857311  1.1934600449  0.70328697  2.91788128
#> 69  1.51788449  2.90894106 -1.670292627  0.9380951848  1.69673739  0.73973780
#> 70  0.43826679 -1.00823425 -0.008239596  0.5890198516  1.93211169 -0.86320058
#> 71  1.36541709  0.87323776  1.731359746  0.5532699100  0.20299516  1.09754468
#> 72  0.58345485  2.06607752  1.843862441  1.8551239654 -0.14973981  1.33449978
#> 73  0.48206198  0.34393063  0.337299144  2.6209202685  1.84446150  2.20804033
#> 74  2.25170368  0.78906592 -0.622445587  0.8343509025 -0.41873899  2.12299316
#> 75  0.10437819 -0.27149248  0.338439915  0.0007931688  0.69804243  3.24252223
#> 76  1.73204920  1.13214515  1.352115296  0.8989827413 -0.16141940  1.17863136
#> 77  0.85551649  3.19911368  0.490812634  0.0746984075  2.27893292  1.88764621
#> 78  2.01379797  1.99638094  1.064849838 -1.4788065366  0.35503075  0.59479018
#> 79 -0.39651750  1.60969853  0.178052596 -0.7202249717 -0.53999488  2.36407531
#> 80  0.25095943  1.87283676  2.345682116  1.4232762378  2.91147039  1.86588489
#>        Series 7    Series 8     Series 9    Series 10
#>  1  1.580025619  0.43147613  0.400291145  0.900529275
#>  2  1.409112352  0.77453610  2.078919611  1.301395512
#>  3  1.413669217  1.16780351  0.256209227  1.861154931
#>  4  1.729224076  0.65010661  0.448784124  1.632657373
#>  5 -1.559899657  0.51583125  2.565669625  1.028337053
#>  6  2.047715195 -0.17614705  2.643443601  2.053555618
#>  7  0.981880079  2.33526740 -0.347042396  0.358125265
#>  8  1.972782664  1.98865980  0.093099169 -0.077580437
#>  9  1.788546374  1.29524300  0.221587172  1.289136060
#> 10  0.595692220  0.56609373 -0.763579234  0.544881243
#> 11  1.188928759  1.69466644  1.530295023  1.518037139
#> 12  1.436695488  3.45739094 -0.317737582  2.015360538
#> 13  1.336395058  2.76900840 -0.479934985  1.635992918
#> 14  0.839626301  0.79698521 -0.603932882  1.473358074
#> 15  1.777769459  2.06286151  0.736053322  2.475937145
#> 16  2.621728690 -1.06391789  0.570484010  1.090387503
#> 17  0.842820981  0.29549223  3.185793373  0.163388524
#> 18  2.162226515  1.27688544  1.577408836  0.641008226
#> 19  0.927655603 -0.09307450  1.217047141  1.773523185
#> 20  0.732517689  2.03443624 -1.157282962  3.504371137
#> 21  0.211162980  0.09143913  0.731963476  0.061050497
#> 22  0.635672889  0.58318832  2.796722157  0.158795461
#> 23  0.115941817  1.00363531  1.983184225 -0.194329173
#> 24  0.582162516  3.50001038  1.579957792 -0.371998941
#> 25  0.667525027  4.24666055  2.148086731  0.564398702
#> 26  3.677226489  1.24648278  1.574006587  0.878409764
#> 27  1.542975629  1.64824176  0.973216990  1.948374990
#> 28 -0.001598207 -0.61693138  1.515181806  1.909781882
#> 29  0.366781761  0.08228873  0.230365499 -0.680300780
#> 30  0.855630793  0.79010832  0.960596095  0.458025776
#> 31  2.939940482  1.54419386  2.032754135  1.944162377
#> 32  0.979179952  1.85815074  1.176415392  1.291772831
#> 33  0.133463005  2.53040119 -0.595500576 -1.240611942
#> 34  1.236081213  2.08779151 -0.268293537  2.266188007
#> 35  1.776289686  0.43001516  0.218055650  1.107436233
#> 36  0.466369297  0.19052971  0.666392882  2.026349990
#> 37  2.322045378  0.95977717  0.751491546  1.384536572
#> 38 -1.037137669  0.91768081  1.118750357  1.394285716
#> 39  0.998788857  0.65764817  1.612676177  1.374401922
#> 40  0.901237242  1.33261658  0.174757900  1.445629202
#> 41  2.113623613  0.28755604  0.678753029  1.625178927
#> 42  1.107543639  1.06490998  1.323464024 -0.109933771
#> 43  0.864046824  1.54800052  2.152478487  0.763568101
#> 44  1.334592870  0.53147706  1.484801782  2.013750019
#> 45  1.714411420  0.11324482  0.920501649 -0.578387726
#> 46 -0.473921651  0.65413353 -0.444562780  1.088393130
#> 47  0.474381650  0.58084743  1.712829515  0.009794148
#> 48  0.049667741  0.85771683  0.620799925 -0.564820182
#> 49  3.619953052  1.64294349  1.399063576  0.976349977
#> 50 -1.545738756  1.13419817  0.783410558  0.676983555
#> 51 -0.015943861  0.22799304  1.081762635  2.031236011
#> 52  1.919797712  1.65080793  1.412569247  1.947698094
#> 53  1.001315725  0.88567783  1.883443662  4.010910337
#> 54  1.076099838 -0.33967694  0.871172663  2.594259096
#> 55  1.085379708  1.57478639 -0.197868187 -0.986262262
#> 56  1.818427695  1.45534150  2.166501380  0.895728792
#> 57  1.561691934  0.30907371  0.338131915  0.687771240
#> 58  1.287403159  0.58569876  1.630162743  0.995877122
#> 59  2.392526865  0.27624513  1.074367279 -0.004765324
#> 60  2.585910447  2.36661583  1.918495053 -1.061062908
#> 61  1.179548509  0.18877460  1.171567445  1.260440708
#> 62  1.230342073  2.38615495  0.852305913  1.642897226
#> 63  1.298122729 -0.52609651  0.615097954  1.785938873
#> 64  1.737037882 -0.12174656  0.327720123  0.716266155
#> 65  2.742294250  1.30433099 -0.033270727  2.020100154
#> 66  1.527161445  0.29652585  1.179614237 -0.253916257
#> 67  0.414198838 -0.68940352  0.968354959 -0.049123710
#> 68  0.668013999  2.92834184  0.587837292 -0.592485298
#> 69  0.480027222 -0.02516995  1.503299565 -0.132747980
#> 70  0.782270570  2.17166762  0.807172366 -0.047293137
#> 71  0.439848056  1.14119727  1.298831647  1.437463684
#> 72  0.616085350  0.05878432  0.886268452 -1.350467860
#> 73  2.282069858  1.00293735  0.833228409  0.284141507
#> 74  1.480804365  0.56132180  0.169735324  1.704749463
#> 75  0.790705351  1.91299154  3.374420511 -0.211209759
#> 76  0.478100463  1.81028184 -0.251761619  1.663934106
#> 77  0.262973836  1.89102529  1.985352120  2.590934293
#> 78  1.269134458  0.96725294 -0.506543666  0.305719591
#> 79  2.104360676  1.38746904  0.008006697  0.652650233
#> 80  0.938653232 -1.11939189 -0.279286707  1.586657959
#> 
#> $Input_Data$Actual_Test
#>  [1] -0.64932563  0.50611644  0.81203774 -0.85999712  0.25865787 -1.09537361
#>  [7]  0.68220772 -0.92065633 -0.17355934 -0.45686399  0.84063980  0.38759957
#> [13] -0.06889376  0.05666342  0.83263032 -1.67775354 -0.91896494 -0.42644707
#> [19]  0.70829920  0.78979415
#> 
#> $Input_Data$Forecasts_Test
#>         Series 1   Series 2   Series 3    Series 4     Series 5     Series 6
#>  [1,] -0.2385209  2.6851917  1.7453790  0.22843982  2.534299727  1.915705701
#>  [2,]  0.5249309  1.1520799  1.5808736  1.58425017  0.947530229 -0.581166208
#>  [3,]  0.7686324  1.3622033  1.3660068  0.14195706  1.347658488 -0.007512494
#>  [4,]  2.0152906  0.2916185  0.5349929  0.66084303  1.097984918  0.274999176
#>  [5,] -1.4427914  1.8101231  1.2809614  3.59729840  2.058542056  0.888673119
#>  [6,]  1.4794580  2.9930085  0.3875704  2.33299054  0.425449686  0.299506326
#>  [7,]  0.6237780  2.2194276  0.6386271  3.79171066  1.177899539  2.466300479
#>  [8,]  2.0853976  0.7093061  2.2906456  2.48485684  1.127404318  0.149359423
#>  [9,]  0.7346899  1.5795645  2.0465569  0.98497985 -0.003166999  1.274398998
#> [10,]  2.3000687  2.7071646  0.7048814  0.40502586  3.282979314  0.825260671
#> [11,] -0.7514555  0.6526641  2.1661511  0.53391396 -0.653539999  1.636779368
#> [12,]  0.9180536  3.4607535 -0.4557291  1.10403282  2.658309217  1.077199750
#> [13,]  1.2570717  1.9030495  0.7592220 -0.07150113  0.811430378  1.872044020
#> [14,]  0.2734447  2.4997518  2.7541334  0.23862967  1.022196404  0.015218367
#> [15,]  2.6338353 -0.1551206  0.5031059  1.49612998  0.062723655  1.792404662
#> [16,]  1.3281506  1.4497524  0.9466572  1.18441011  0.682133411  1.944448452
#> [17,] -0.2263399  2.3619188  3.6662935  2.05653554  0.552730525  1.235011458
#> [18,]  2.7762135 -0.1120779  1.3369908  1.66543869  1.834644170  0.835215136
#> [19,]  1.0880103  1.3959128  3.5727052 -0.38351722  1.330353395  0.201638755
#> [20,]  0.4920097  1.1378751  1.7912296  1.32907362  0.648367791  0.600733522
#>         Series 7    Series 8    Series 9   Series 10
#>  [1,] -0.3956995  1.37407379 -0.30568465  1.96672309
#>  [2,]  2.0047311 -0.03300400  1.99378023  2.06586426
#>  [3,]  2.2589977  1.09796108  1.99324807  1.86953724
#>  [4,]  0.2374274 -0.02496359 -0.51917187  1.33380886
#>  [5,]  1.7908030  0.56117729 -0.32158455 -0.07322391
#>  [6,]  1.1807577  1.57675960 -0.41818523  1.36940910
#>  [7,]  0.4383561  0.92449115  1.45608026  2.03840159
#>  [8,] -0.2025868 -0.18094510  1.35737236  1.73934300
#>  [9,]  0.6620187 -1.18033207  0.82107955 -0.13806651
#> [10,]  1.1629113 -0.22510716  0.01300418  1.57352639
#> [11,]  1.2605888  0.96931935  0.62941535  1.35520261
#> [12,]  2.0587246  2.84175950 -0.16385219  2.80738308
#> [13,]  1.7541318  0.31309164  0.80732829  2.60961469
#> [14,] -0.5883313  1.33455398  1.04825733 -0.22106382
#> [15,]  1.8617319  1.34769126  0.88857811  1.67776862
#> [16,]  1.1614075  1.83998176 -0.03248675  0.17984142
#> [17,]  0.4440800  0.53911400  0.86916702  0.31147200
#> [18,]  1.4340379  0.82856395 -0.37695773 -0.94787253
#> [19,]  1.1712700  0.32028985 -0.41456531 -0.03970807
#> [20,]  0.4493721  0.29393898  1.53080765  0.06169887
#> 
#> 
#> $Predict
#> function (object, newpreds) 
#> {
#>     pred <- apply(newpreds, 1, function(x) mean(x, trim = object$Trim_Factor))
#>     return(pred)
#> }
#> <bytecode: 0x56049daaf248>
#> <environment: namespace:ForecastComb>
#> 
#> $Weights
#> [1] "Weights of the individual forecasts differ over time with trimmed mean"
#> 
#> $Forecasts_Test
#>  [1] 1.1525519 1.2193965 1.2434006 0.5508389 0.9994339 1.1314877 1.4431257
#>  [8] 1.1597354 0.7394372 1.2114804 0.7980429 1.6627013 1.1846712 0.7763736
#> [15] 1.2037668 1.0965418 1.0462537 0.9307319 0.6355312 0.8102723
#> 
#> $Accuracy_Test
#>                 ME     RMSE      MAE      MPE     MAPE
#> Test set -1.118448 1.364276 1.129985 102.8062 326.6335
#> 
#> $Trim_Factor
#> [1] 0.1
#> 
#> attr(,"class")
#> [1] "foreccomb_res"

## Algorithm-optimized trim factor:
data<-foreccomb(train_o, train_p, test_o, test_p)
comb_TA(data, criterion="RMSE")
#> Optimization algorithm chooses trim factor for trimmed mean approach...
#> Algorithm finished. Optimized trim factor: 0
#> $Method
#> [1] "Trimmed Mean"
#> 
#> $Models
#>  [1] "Series 1"  "Series 2"  "Series 3"  "Series 4"  "Series 5"  "Series 6" 
#>  [7] "Series 7"  "Series 8"  "Series 9"  "Series 10"
#> 
#> $Fitted
#> Time Series:
#> Start = 1 
#> End = 80 
#> Frequency = 1 
#>  [1] 0.8405380 0.9382082 1.3892817 1.3156695 0.6471328 1.5941053 0.3820451
#>  [8] 0.8801125 1.1717931 0.6424297 0.9023377 1.2320954 0.9386869 0.8564343
#> [15] 0.9298584 1.0170773 1.4013855 1.3902822 0.9648404 0.7412702 0.8277230
#> [22] 0.9181180 0.6287679 1.0734809 1.3364608 1.4417400 1.0245184 0.7409716
#> [29] 0.7365072 0.8068690 1.6607404 0.9865014 0.3350701 1.2792129 1.0388684
#> [36] 0.6792643 1.0386903 0.9943660 1.1129610 1.0272547 1.1665157 0.9978591
#> [43] 0.7269734 1.0668653 0.9851605 0.9318555 1.4101128 0.4455562 1.2321894
#> [50] 1.1949770 0.6801913 1.4197773 1.7562185 1.2071849 1.1664571 1.6104953
#> [57] 0.9832253 1.0785823 0.7956022 1.1570859 0.6557307 0.5322071 1.0568754
#> [64] 0.8830392 0.9250854 0.7490763 0.6263532 1.0091798 0.7956512 0.4793541
#> [71] 1.0141165 0.7743949 1.2239091 0.8873540 0.9979591 0.9833059 1.5517006
#> [78] 0.6581606 0.6647576 1.1796742
#> 
#> $Accuracy_Train
#>                ME     RMSE      MAE      MPE     MAPE       ACF1 Theil's U
#> Test set -1.02729 1.314464 1.117106 164.1927 328.1222 -0.1400476  1.870272
#> 
#> $Input_Data
#> $Input_Data$Actual_Train
#> Time Series:
#> Start = 1 
#> End = 80 
#> Frequency = 1 
#>  [1] -1.12023850  0.72812842 -1.22469330  0.80575706 -0.55979953 -0.35669315
#>  [7] -1.49320292 -0.53923261  0.85872649 -1.00745112 -0.92233675  0.30379526
#> [13]  0.33000396 -0.80832967 -0.91868667 -0.26527531  1.03099672 -0.68352448
#> [19] -0.22649681  0.16996093 -0.72686555  0.78154113 -0.25901027 -0.51562993
#> [25]  0.35920891 -0.65506209  0.82451908 -2.24258789  0.92700850 -0.32961858
#> [31]  1.07310626  2.09001176 -0.78025595  0.95939569  0.76098539  0.37805308
#> [37]  0.49713458 -0.71677396  0.29118541 -1.31751275  0.98550032  0.82547334
#> [43] -0.90122912 -0.78791398  1.88151833  0.61894917 -0.76548873 -0.77354096
#> [49] -0.06727977  0.22156782  0.68812811  0.18016857  1.31596181  0.21298099
#> [55]  0.69276192 -0.02661631  0.20092330 -0.25920385 -1.18162464 -0.25328611
#> [61] -1.27922444  0.53499682  0.46395551 -0.83119159  0.39662959  1.27430483
#> [67] -0.56857131 -0.52702374 -0.64121262 -0.91254018 -0.07632995  0.06933154
#> [73]  0.24768030  0.14998107  1.86426491  0.92171508 -1.02865530 -0.31774937
#> [79]  0.16147636 -0.86861669
#> 
#> $Input_Data$Forecasts_Train
#> Time Series:
#> Start = 1 
#> End = 80 
#> Frequency = 1 
#>       Series 1    Series 2     Series 3      Series 4    Series 5    Series 6
#>  1  1.67366932  0.03234905  1.102684857  2.5151592147  0.17008888 -0.40089345
#>  2  0.67997396  0.81701758  0.721478669  0.4618385970  0.70297031  0.43483948
#>  3  0.61337785  2.42278558  2.281219274  2.4685726548  0.79145165  0.61657268
#>  4  2.92423726  0.56668637 -0.785104024  2.8435568233  2.01475814  1.13178825
#>  5  1.59018091  2.27592162 -1.056482607  0.8681924321  0.21043983  0.03313741
#>  6  2.25251154  2.68066796  0.352650355  1.9579250613  1.09485218  1.03387859
#>  7  0.62446091  0.08436869  1.024385493  0.3833482992 -1.90610738  0.28176486
#>  8  0.46801665  1.69599387  0.452534954  2.2938156748  1.23672743 -1.32292469
#>  9  1.93755565 -1.12552096 -0.066994783  2.3045306766  3.09818648  0.97566103
#> 10  0.24862630 -0.40630228  0.532573537  1.7639029999  2.59406122  0.74834723
#> 11 -0.13453965 -0.63299655  1.387970369  0.8748380187  1.96860617 -0.37242917
#> 12  1.97224430 -0.49837354  0.879561850  1.7258584986 -0.06693445  1.71688767
#> 13  1.38299761  0.08617128  1.184151330 -0.2546572631  1.01686285  0.70988191
#> 14  0.78296746 -0.45539420  1.800746192  2.6168234105  0.63798745  0.67517631
#> 15  0.17597094  1.66844942  1.696938871 -0.1140685981  0.25387432 -1.43520246
#> 16  1.98517980  1.13480347  1.896975699  1.5071647308 -0.22963857  0.65760577
#> 17  0.99758654  2.48110602  3.313796972  0.0142234260  0.61736808  2.10227863
#> 18  0.87433193  2.19418763  1.700283976  2.1215480977  1.40557149 -0.05062992
#> 19  0.38505774  0.73978795  1.361441744  2.1507580810  0.12765418  1.05855288
#> 20  0.97483258 -0.15859133 -0.774914712  0.9346792361  1.09731305  0.22534059
#> 21  1.05214845  1.68226533  0.842714576  1.0823548325  1.56730658  0.95482448
#> 22 -0.06648854  0.52508544 -0.075750449  1.9902233761  1.12132279  1.51240807
#> 23  1.65829632  0.02005035 -0.302100942  1.6980403922  0.74772671 -0.44276646
#> 24 -0.13099495  1.60218975  0.166360774  2.1457288410 -0.52106847  2.18246138
#> 25  0.47163128  2.29858293 -0.298526483  0.5866604446  0.81769405  1.86189457
#> 26  1.78429447  0.98517710  2.854852533  1.2709174661 -0.32584228  0.47187518
#> 27  0.39481217  2.00487649  0.546468353  0.9952090628 -1.47207258  1.66308098
#> 28 -0.59921201  1.70129722  1.249990240  1.2037998077 -0.10250556  1.14991191
#> 29  0.85188814  2.42415145  2.366528446  1.2336084982 -0.20598172  0.69574184
#> 30  1.67493620  2.21215307  0.049483919  0.4822264290  0.84830192 -0.26277279
#> 31  0.93990608  1.33605518  0.138540049  1.0756345920  1.82029290  2.83592479
#> 32  2.37813880  1.73391059 -0.099409798  0.7804419606 -0.47370896  0.24012272
#> 33  0.02160552  0.32725434  0.799484413  0.3469453258 -0.41978943  1.44744894
#> 34  1.17534733  1.54575066  1.175986731  1.6211466000  1.47690540  0.47522554
#> 35  0.86541870  1.32876630  1.442959352  0.7458088494  0.65135642  1.82257751
#> 36  0.62657059  0.62827487  0.823734417  0.3285104828  0.22768478  0.80822550
#> 37  0.32509329  1.54194372 -0.290711683  1.4988684434  0.68207974  1.21177882
#> 38  1.78274447  1.60304233  1.295246916  0.0792628726  0.80860760  1.98117669
#> 39  1.61494497  1.20437204  1.676364715  0.6490247992 -0.15718040  1.49856900
#> 40  1.06287945  1.64309393  1.515547172 -0.7583774906  1.86130770  1.09385489
#> 41  0.41703833 -0.03414989  0.049508475  2.4385709498  3.12473426  0.96434352
#> 42  1.33556044  0.91561583  1.911637179  1.5186354681 -0.07777555  0.98893394
#> 43 -2.37646562  3.01172735  0.330554980  1.0505735665  0.38725857 -0.46200888
#> 44  1.14101201  0.11712143  0.836109393  2.4358637735  0.82087078 -0.04694651
#> 45  1.15701789  0.46698143  0.467913548  2.0566592454  1.70188751  1.83137561
#> 46  0.76208415  2.58505391  1.814709975  1.5914550443  0.19140828  1.54980184
#> 47  1.98379728  0.88502854  2.283488446  1.0081638912  2.43310911  2.72968791
#> 48  0.40599280 -0.58797717 -0.697303929  0.4837331523  1.88319566  2.00455677
#> 49  0.84045810  2.05672207  1.402257510 -0.5960420009  1.32177428 -0.34158575
#> 50  1.41396422  2.80234550  2.117110603  0.7227669538  2.38376397  1.46096556
#> 51  0.07104548  2.33565298 -0.779811958  0.6089289223  0.15849831  1.08255150
#> 52  0.90706273  1.93585060  0.587934960  1.5096274837  1.52348959  0.80293423
#> 53  3.27507175  1.66695230  0.533642112  1.8535018418  2.91706620 -0.46539695
#> 54  2.30770959  2.05527975  2.614276899  1.8668891006 -0.42578832 -0.54837246
#> 55  1.93205891  1.69310459  0.594401032  2.9257926775  1.58705697  1.45612091
#> 56  1.96244409  1.76406793  2.523654745  0.8175925352  1.10436711  1.59682732
#> 57  1.33693888  1.56460533  1.075137103 -0.8509415011  2.33975861  1.47008601
#> 58 -0.18177473  0.45288698  2.307065171  1.3980063472  0.21060218  2.09989528
#> 59  0.26618109 -0.42816114  2.422462716  1.5578083664 -0.19733639  0.59669296
#> 60  0.63665050  0.68637264 -0.034247027  2.6973440728  0.70778524  1.06699509
#> 61  0.53838099  1.16831184  0.357739312  0.4484154147 -0.31992478  0.56405267
#> 62 -0.39659895 -0.23171518  0.084855495 -0.6075298297  0.76969478 -0.40833533
#> 63  2.17893789  1.10841232  0.557768774  2.9958100538 -0.31881699  0.87357931
#> 64  1.69852004  1.07098358 -0.156778015  0.7217591349  2.31806573  0.51856383
#> 65  1.10438536  0.46358294 -0.177649425 -0.5627568123  1.19518256  1.19465503
#> 66 -0.60823744  0.63678182 -0.129922881  3.5009086798  0.63971230  0.70213496
#> 67  1.28981184  0.28621699  0.364951490  1.7562429765 -0.01850383  1.94078573
#> 68  2.23888918 -1.72828459  1.174857311  1.1934600449  0.70328697  2.91788128
#> 69  1.51788449  2.90894106 -1.670292627  0.9380951848  1.69673739  0.73973780
#> 70  0.43826679 -1.00823425 -0.008239596  0.5890198516  1.93211169 -0.86320058
#> 71  1.36541709  0.87323776  1.731359746  0.5532699100  0.20299516  1.09754468
#> 72  0.58345485  2.06607752  1.843862441  1.8551239654 -0.14973981  1.33449978
#> 73  0.48206198  0.34393063  0.337299144  2.6209202685  1.84446150  2.20804033
#> 74  2.25170368  0.78906592 -0.622445587  0.8343509025 -0.41873899  2.12299316
#> 75  0.10437819 -0.27149248  0.338439915  0.0007931688  0.69804243  3.24252223
#> 76  1.73204920  1.13214515  1.352115296  0.8989827413 -0.16141940  1.17863136
#> 77  0.85551649  3.19911368  0.490812634  0.0746984075  2.27893292  1.88764621
#> 78  2.01379797  1.99638094  1.064849838 -1.4788065366  0.35503075  0.59479018
#> 79 -0.39651750  1.60969853  0.178052596 -0.7202249717 -0.53999488  2.36407531
#> 80  0.25095943  1.87283676  2.345682116  1.4232762378  2.91147039  1.86588489
#>        Series 7    Series 8     Series 9    Series 10
#>  1  1.580025619  0.43147613  0.400291145  0.900529275
#>  2  1.409112352  0.77453610  2.078919611  1.301395512
#>  3  1.413669217  1.16780351  0.256209227  1.861154931
#>  4  1.729224076  0.65010661  0.448784124  1.632657373
#>  5 -1.559899657  0.51583125  2.565669625  1.028337053
#>  6  2.047715195 -0.17614705  2.643443601  2.053555618
#>  7  0.981880079  2.33526740 -0.347042396  0.358125265
#>  8  1.972782664  1.98865980  0.093099169 -0.077580437
#>  9  1.788546374  1.29524300  0.221587172  1.289136060
#> 10  0.595692220  0.56609373 -0.763579234  0.544881243
#> 11  1.188928759  1.69466644  1.530295023  1.518037139
#> 12  1.436695488  3.45739094 -0.317737582  2.015360538
#> 13  1.336395058  2.76900840 -0.479934985  1.635992918
#> 14  0.839626301  0.79698521 -0.603932882  1.473358074
#> 15  1.777769459  2.06286151  0.736053322  2.475937145
#> 16  2.621728690 -1.06391789  0.570484010  1.090387503
#> 17  0.842820981  0.29549223  3.185793373  0.163388524
#> 18  2.162226515  1.27688544  1.577408836  0.641008226
#> 19  0.927655603 -0.09307450  1.217047141  1.773523185
#> 20  0.732517689  2.03443624 -1.157282962  3.504371137
#> 21  0.211162980  0.09143913  0.731963476  0.061050497
#> 22  0.635672889  0.58318832  2.796722157  0.158795461
#> 23  0.115941817  1.00363531  1.983184225 -0.194329173
#> 24  0.582162516  3.50001038  1.579957792 -0.371998941
#> 25  0.667525027  4.24666055  2.148086731  0.564398702
#> 26  3.677226489  1.24648278  1.574006587  0.878409764
#> 27  1.542975629  1.64824176  0.973216990  1.948374990
#> 28 -0.001598207 -0.61693138  1.515181806  1.909781882
#> 29  0.366781761  0.08228873  0.230365499 -0.680300780
#> 30  0.855630793  0.79010832  0.960596095  0.458025776
#> 31  2.939940482  1.54419386  2.032754135  1.944162377
#> 32  0.979179952  1.85815074  1.176415392  1.291772831
#> 33  0.133463005  2.53040119 -0.595500576 -1.240611942
#> 34  1.236081213  2.08779151 -0.268293537  2.266188007
#> 35  1.776289686  0.43001516  0.218055650  1.107436233
#> 36  0.466369297  0.19052971  0.666392882  2.026349990
#> 37  2.322045378  0.95977717  0.751491546  1.384536572
#> 38 -1.037137669  0.91768081  1.118750357  1.394285716
#> 39  0.998788857  0.65764817  1.612676177  1.374401922
#> 40  0.901237242  1.33261658  0.174757900  1.445629202
#> 41  2.113623613  0.28755604  0.678753029  1.625178927
#> 42  1.107543639  1.06490998  1.323464024 -0.109933771
#> 43  0.864046824  1.54800052  2.152478487  0.763568101
#> 44  1.334592870  0.53147706  1.484801782  2.013750019
#> 45  1.714411420  0.11324482  0.920501649 -0.578387726
#> 46 -0.473921651  0.65413353 -0.444562780  1.088393130
#> 47  0.474381650  0.58084743  1.712829515  0.009794148
#> 48  0.049667741  0.85771683  0.620799925 -0.564820182
#> 49  3.619953052  1.64294349  1.399063576  0.976349977
#> 50 -1.545738756  1.13419817  0.783410558  0.676983555
#> 51 -0.015943861  0.22799304  1.081762635  2.031236011
#> 52  1.919797712  1.65080793  1.412569247  1.947698094
#> 53  1.001315725  0.88567783  1.883443662  4.010910337
#> 54  1.076099838 -0.33967694  0.871172663  2.594259096
#> 55  1.085379708  1.57478639 -0.197868187 -0.986262262
#> 56  1.818427695  1.45534150  2.166501380  0.895728792
#> 57  1.561691934  0.30907371  0.338131915  0.687771240
#> 58  1.287403159  0.58569876  1.630162743  0.995877122
#> 59  2.392526865  0.27624513  1.074367279 -0.004765324
#> 60  2.585910447  2.36661583  1.918495053 -1.061062908
#> 61  1.179548509  0.18877460  1.171567445  1.260440708
#> 62  1.230342073  2.38615495  0.852305913  1.642897226
#> 63  1.298122729 -0.52609651  0.615097954  1.785938873
#> 64  1.737037882 -0.12174656  0.327720123  0.716266155
#> 65  2.742294250  1.30433099 -0.033270727  2.020100154
#> 66  1.527161445  0.29652585  1.179614237 -0.253916257
#> 67  0.414198838 -0.68940352  0.968354959 -0.049123710
#> 68  0.668013999  2.92834184  0.587837292 -0.592485298
#> 69  0.480027222 -0.02516995  1.503299565 -0.132747980
#> 70  0.782270570  2.17166762  0.807172366 -0.047293137
#> 71  0.439848056  1.14119727  1.298831647  1.437463684
#> 72  0.616085350  0.05878432  0.886268452 -1.350467860
#> 73  2.282069858  1.00293735  0.833228409  0.284141507
#> 74  1.480804365  0.56132180  0.169735324  1.704749463
#> 75  0.790705351  1.91299154  3.374420511 -0.211209759
#> 76  0.478100463  1.81028184 -0.251761619  1.663934106
#> 77  0.262973836  1.89102529  1.985352120  2.590934293
#> 78  1.269134458  0.96725294 -0.506543666  0.305719591
#> 79  2.104360676  1.38746904  0.008006697  0.652650233
#> 80  0.938653232 -1.11939189 -0.279286707  1.586657959
#> 
#> $Input_Data$Actual_Test
#>  [1] -0.64932563  0.50611644  0.81203774 -0.85999712  0.25865787 -1.09537361
#>  [7]  0.68220772 -0.92065633 -0.17355934 -0.45686399  0.84063980  0.38759957
#> [13] -0.06889376  0.05666342  0.83263032 -1.67775354 -0.91896494 -0.42644707
#> [19]  0.70829920  0.78979415
#> 
#> $Input_Data$Forecasts_Test
#>         Series 1   Series 2   Series 3    Series 4     Series 5     Series 6
#>  [1,] -0.2385209  2.6851917  1.7453790  0.22843982  2.534299727  1.915705701
#>  [2,]  0.5249309  1.1520799  1.5808736  1.58425017  0.947530229 -0.581166208
#>  [3,]  0.7686324  1.3622033  1.3660068  0.14195706  1.347658488 -0.007512494
#>  [4,]  2.0152906  0.2916185  0.5349929  0.66084303  1.097984918  0.274999176
#>  [5,] -1.4427914  1.8101231  1.2809614  3.59729840  2.058542056  0.888673119
#>  [6,]  1.4794580  2.9930085  0.3875704  2.33299054  0.425449686  0.299506326
#>  [7,]  0.6237780  2.2194276  0.6386271  3.79171066  1.177899539  2.466300479
#>  [8,]  2.0853976  0.7093061  2.2906456  2.48485684  1.127404318  0.149359423
#>  [9,]  0.7346899  1.5795645  2.0465569  0.98497985 -0.003166999  1.274398998
#> [10,]  2.3000687  2.7071646  0.7048814  0.40502586  3.282979314  0.825260671
#> [11,] -0.7514555  0.6526641  2.1661511  0.53391396 -0.653539999  1.636779368
#> [12,]  0.9180536  3.4607535 -0.4557291  1.10403282  2.658309217  1.077199750
#> [13,]  1.2570717  1.9030495  0.7592220 -0.07150113  0.811430378  1.872044020
#> [14,]  0.2734447  2.4997518  2.7541334  0.23862967  1.022196404  0.015218367
#> [15,]  2.6338353 -0.1551206  0.5031059  1.49612998  0.062723655  1.792404662
#> [16,]  1.3281506  1.4497524  0.9466572  1.18441011  0.682133411  1.944448452
#> [17,] -0.2263399  2.3619188  3.6662935  2.05653554  0.552730525  1.235011458
#> [18,]  2.7762135 -0.1120779  1.3369908  1.66543869  1.834644170  0.835215136
#> [19,]  1.0880103  1.3959128  3.5727052 -0.38351722  1.330353395  0.201638755
#> [20,]  0.4920097  1.1378751  1.7912296  1.32907362  0.648367791  0.600733522
#>         Series 7    Series 8    Series 9   Series 10
#>  [1,] -0.3956995  1.37407379 -0.30568465  1.96672309
#>  [2,]  2.0047311 -0.03300400  1.99378023  2.06586426
#>  [3,]  2.2589977  1.09796108  1.99324807  1.86953724
#>  [4,]  0.2374274 -0.02496359 -0.51917187  1.33380886
#>  [5,]  1.7908030  0.56117729 -0.32158455 -0.07322391
#>  [6,]  1.1807577  1.57675960 -0.41818523  1.36940910
#>  [7,]  0.4383561  0.92449115  1.45608026  2.03840159
#>  [8,] -0.2025868 -0.18094510  1.35737236  1.73934300
#>  [9,]  0.6620187 -1.18033207  0.82107955 -0.13806651
#> [10,]  1.1629113 -0.22510716  0.01300418  1.57352639
#> [11,]  1.2605888  0.96931935  0.62941535  1.35520261
#> [12,]  2.0587246  2.84175950 -0.16385219  2.80738308
#> [13,]  1.7541318  0.31309164  0.80732829  2.60961469
#> [14,] -0.5883313  1.33455398  1.04825733 -0.22106382
#> [15,]  1.8617319  1.34769126  0.88857811  1.67776862
#> [16,]  1.1614075  1.83998176 -0.03248675  0.17984142
#> [17,]  0.4440800  0.53911400  0.86916702  0.31147200
#> [18,]  1.4340379  0.82856395 -0.37695773 -0.94787253
#> [19,]  1.1712700  0.32028985 -0.41456531 -0.03970807
#> [20,]  0.4493721  0.29393898  1.53080765  0.06169887
#> 
#> 
#> $Predict
#> function (object, newpreds) 
#> {
#>     pred <- apply(newpreds, 1, function(x) mean(x, trim = object$Trim_Factor))
#>     return(pred)
#> }
#> <bytecode: 0x56049daaf248>
#> <environment: namespace:ForecastComb>
#> 
#> $Weights
#> [1] "Weights of the individual forecasts differ over time with trimmed mean"
#> 
#> $Forecasts_Test
#>  [1] 1.1509908 1.1239870 1.2198690 0.5902830 1.0149978 1.1626724 1.5775072
#>  [8] 1.1560153 0.6781723 1.2749715 0.7799039 1.6306635 1.2015483 0.8376790
#> [15] 1.2108849 1.0684296 1.1809983 0.9274196 0.8242390 0.8335107
#> 
#> $Accuracy_Test
#>                 ME     RMSE     MAE     MPE     MAPE
#> Test set -1.140897 1.380541 1.14697 97.3022 333.5354
#> 
#> $Trim_Factor
#> [1] 0
#> 
#> attr(,"class")
#> [1] "foreccomb_res"