Structures cross-sectional input data (individual model forecasts) for forecast combination. Stores data as S3 class
foreccomb
that serves as input to the forecast combination techniques. Handles missing value imputation (optional) and resolves
problems due to perfect collinearity.
foreccomb(
observed_vector,
prediction_matrix,
newobs = NULL,
newpreds = NULL,
byrow = FALSE,
na.impute = TRUE,
criterion = "RMSE"
)
A vector or univariate time series; contains ‘actual values’ for training set.
A matrix or multivariate time series; contains individual model forecasts for training set.
A vector or univariate time series; contains ‘actual values’ if a test set is used (optional).
A matrix or multivariate time series; contains individual model forecasts if a test set is used (optional). Does not
require specification of newobs
-- in the case in which a forecaster only wants to train the forecast combination method
with a training set and apply it to future individual model forecasts, only newpreds
is required, not newobs
.
logical. The default (FALSE
) assumes that each column of the forecast matrices (prediction_matrix
and -- if
specified -- newpreds
) contains forecasts from one forecast model; if each row of the matrices contains forecasts from
one forecast model, set to TRUE
.
logical. The default (TRUE
) behavior is to impute missing values via the cross-validated spline approach of
the mtsdi
package. If set to FALSE
, forecasts with missing values will be removed. Missing values in the observed data are never
imputed.
One of "RMSE"
(default), "MAE"
, or "MAPE"
. Is only used if prediction_matrix
is not full rank: The algorithm
checks which models are causing perfect collinearity and the one with the worst individual accuracy (according to the chosen
criterion) is removed.
Returns an object of class foreccomb
.
The function imports the column names of the prediction matrix (if byrow = FALSE
, otherwise the row names) as model names;
if no column names are specified, generic model names are created.
The missing value imputation algorithm is a modified version of the EM algorithm for imputation that is applicable to time series data - accounting for correlation between the forecasting models and time structure of the series itself. A smooth spline is fitted to each of the time series at each iteration. The degrees of freedom of each spline are chosen by cross-validation.
Forecast combination relies on the lack of perfect collinearity. The test for this condition checks if prediction_matrix
is full
rank. In the presence of perfect collinearity, the iterative algorithm identifies the subset of forecasting models that are causing
linear dependence and removes the one among them that has the lowest accuracy (according to a selected criterion, default is RMSE).
This procedure is repeated until the revised prediction matrix is full rank.
Junger, W. L., Ponce de Leon, A., and Santos, N. (2003). Missing Data Imputation in Multivariate Time Series via EM Algorithm. Cadernos do IME, 15, 8--21.
Dempster, A., Laird, N., and Rubin D. (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, Series B, 39(1), 1--38.
obs <- rnorm(100)
preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]
train_p<-preds[1:80,]
test_o<-obs[81:100]
test_p<-preds[81:100,]
## Example with a training set only:
foreccomb(train_o, train_p)
#> $Actual_Train
#> Time Series:
#> Start = 1
#> End = 80
#> Frequency = 1
#> [1] 0.43400756 -0.60936755 1.73788479 0.17019650 -0.60997495 -0.88493843
#> [7] -3.04292016 -0.80547635 1.48667223 -0.81349723 -0.98581235 0.32692250
#> [13] -1.14354994 1.11520398 0.16205873 -1.45973711 0.88362320 -0.95163208
#> [19] 0.48773017 0.61218570 -0.66860373 -0.31831967 -1.16119564 0.60003441
#> [25] -1.49167669 -1.05530366 0.11894684 -0.25818750 -0.84677252 2.07398325
#> [31] -0.60831152 0.78335902 0.45210259 -1.05652325 -0.30095115 0.20361402
#> [37] -1.36169564 0.11097343 -1.11684970 1.66399814 0.06007734 1.35932805
#> [43] 1.13993162 1.04056666 1.44447337 -1.09509360 -0.20536797 -0.22885541
#> [49] -1.06064057 -1.42084892 1.61972024 0.05055291 -0.73095552 -0.02253699
#> [55] 1.22242238 -1.30657291 0.64185024 -0.20405723 0.45268331 -0.81430453
#> [61] -1.11999100 0.61961511 -0.18541009 0.25505837 -0.11288202 0.10624340
#> [67] 1.27289077 -0.65136265 0.05857765 0.54267087 1.28711792 -1.22413234
#> [73] -0.26025788 1.88077852 0.97105882 0.11126840 -1.57443516 1.30479528
#> [79] 0.77987831 -0.50060114
#>
#> $Forecasts_Train
#> Time Series:
#> Start = 1
#> End = 80
#> Frequency = 1
#> Series 1 Series 2 Series 3 Series 4 Series 5 Series 6
#> 1 0.49035870 0.900280120 3.149106584 0.46437044 1.71035305 0.33958138
#> 2 1.29856014 -0.241495179 1.767830806 0.85851602 1.67950686 2.57436136
#> 3 0.28742452 0.002112943 2.049470658 0.63612821 2.27472718 0.82215308
#> 4 0.26586712 0.252073962 1.027658636 2.51242817 -0.55670766 1.28138024
#> 5 1.06403760 2.166644019 1.526688482 -0.98958234 -0.75659683 -0.28676256
#> 6 0.72273245 1.019240683 -0.005815529 0.91806524 -0.73411887 0.99314071
#> 7 0.40760472 1.401171394 3.197404454 2.31845039 -0.91714470 2.60080835
#> 8 1.69111890 1.069845467 0.702314124 1.32960310 0.14908582 0.60056549
#> 9 0.53254793 -1.205506173 -0.163425224 1.07887669 0.43436698 2.21667485
#> 10 1.55818258 1.464048908 -0.560937779 0.96632378 0.59304219 0.11642798
#> 11 0.34223086 0.895949751 1.097984141 0.57108564 2.36118225 -0.17334560
#> 12 1.90763130 0.627971660 2.329258487 0.23239814 1.48491225 1.06812522
#> 13 1.55607918 1.379200372 -0.110599691 0.84442977 3.08698121 1.17980929
#> 14 -0.80581475 -1.004890326 2.010167512 2.00865252 1.46893454 1.05667256
#> 15 0.87430724 2.115190217 2.068816561 0.33768070 2.18911369 0.79610998
#> 16 2.14699845 2.613408288 -0.187365519 2.58519311 1.71322852 0.48814835
#> 17 2.62758961 1.568510929 1.708963397 0.60726478 2.85862373 1.63591495
#> 18 1.02754292 1.534428918 0.702916655 1.84197242 2.28961667 0.59101182
#> 19 -0.80362627 2.074658756 1.503916904 0.26679451 1.08495291 0.12775184
#> 20 3.19379384 0.086029912 1.429044295 2.91702809 0.88090793 0.09030641
#> 21 1.15147619 -0.196600889 1.038899464 2.08631377 2.84641728 0.02171143
#> 22 0.11329226 -0.051354817 -0.270471957 0.75203685 1.72469559 1.06147517
#> 23 -0.52730675 -0.644431851 1.336518748 2.68951417 0.50385051 2.02049362
#> 24 1.06343685 1.340013101 0.816299130 0.31409716 -0.09552238 0.89251584
#> 25 2.44035374 1.826320050 0.250284052 0.31616172 2.33152044 0.56948658
#> 26 0.61124939 0.147818461 1.100501383 0.07936381 2.11960963 -0.16021862
#> 27 1.16547789 1.662488840 -1.054171126 2.44943900 1.36484498 1.06396381
#> 28 0.65561619 2.596515342 2.804254467 1.76861728 -0.76243445 0.28346271
#> 29 1.59548588 0.648740322 3.043544311 2.34751346 1.30873823 2.93396120
#> 30 -0.14925506 0.367000085 1.221017455 -0.01794408 0.53307285 -0.09841434
#> 31 0.20209834 2.060188650 1.416987156 1.25954334 -1.26358591 0.50231918
#> 32 0.74339088 1.864128778 -0.133568286 0.32993216 1.93793288 -0.45490069
#> 33 0.07458618 -0.300486024 -0.357276791 -0.03109610 1.21784137 -1.32189721
#> 34 1.16581417 1.215292355 0.303869420 -0.17852637 0.53966693 0.54581364
#> 35 1.86729664 -0.010173163 0.916255662 -0.03674990 0.27750348 0.71456714
#> 36 1.17487414 2.798167464 -0.603860166 1.08169121 -0.34135847 1.72351212
#> 37 1.86361750 0.551169595 0.356379728 1.39451909 1.41614559 -0.27472929
#> 38 1.58464519 1.532836334 1.766030845 -0.09285101 2.04205620 1.40001639
#> 39 0.66919058 1.300832981 -0.568302346 1.05622671 0.79503770 1.49554501
#> 40 1.30578017 0.541273824 1.289982800 1.41616058 1.18654062 1.27708127
#> 41 0.96753762 -0.241957197 1.203216841 -0.50472343 -0.03517353 1.73085437
#> 42 3.84688023 3.978722899 0.282846256 -0.52705481 0.43860180 1.30048110
#> 43 1.49219553 0.551026149 0.502466673 1.70898499 2.21217630 -0.42535649
#> 44 1.43157315 0.822865021 1.408204053 0.27839911 1.44747061 -0.26097392
#> 45 1.30864534 2.136997979 1.382958103 2.66112171 -0.75693836 -0.10904965
#> 46 1.07332106 1.658319788 0.001486564 1.17064527 0.83317998 1.28915016
#> 47 1.83151376 1.097060723 1.910345038 0.42665777 0.05433657 0.40084826
#> 48 1.76206608 2.692937337 2.930613267 1.34124462 0.03187431 0.11171237
#> 49 0.86774028 -0.526270161 0.960831119 -0.03512074 1.29994442 0.62686894
#> 50 1.33256468 1.538898972 1.198609355 0.45814060 1.12740128 1.06682605
#> 51 -0.47332243 -0.134711092 0.658499779 2.10389238 0.28127889 2.20363134
#> 52 0.89825061 1.692757571 0.160376162 0.72750150 -0.53798220 0.85462936
#> 53 -0.71793245 0.209596475 2.715632975 2.07031297 2.22030106 1.84828597
#> 54 0.24569425 1.039674956 0.852893054 0.19913196 1.13654499 1.30626366
#> 55 0.40246995 1.554239163 0.794617003 0.70033910 0.27802854 0.55639267
#> 56 1.45619783 1.268076364 1.257291618 -0.41035644 -0.18956674 2.40499675
#> 57 -0.12867484 3.076600798 0.718096693 0.58409047 0.43987850 2.56109440
#> 58 2.39187213 0.953676226 0.437945903 2.13261053 0.96516226 0.89035456
#> 59 0.01381174 1.126990621 2.438027039 0.02707141 0.02924701 -0.28576661
#> 60 1.24736147 0.078583502 0.168934646 2.31967808 0.31784723 0.82667061
#> 61 0.52179143 -0.723432837 0.722708657 2.12845772 -0.65727594 1.07993430
#> 62 0.47616934 2.304859390 0.305688670 2.44005492 2.35437176 2.19821615
#> 63 1.06647309 0.999234408 2.425531551 0.37943573 -0.34087915 2.41264420
#> 64 2.99995832 1.165681695 0.517560044 0.76812127 0.14978533 1.13943035
#> 65 0.60378299 0.941669426 1.114673583 1.60123284 -0.46883665 2.18068910
#> 66 -0.61924429 1.384093132 2.105294105 0.44256679 1.11567925 1.70342419
#> 67 0.45119769 0.928279542 0.624233078 -0.33337714 1.14419836 1.67898783
#> 68 1.60586942 1.316623500 1.862004837 2.20678683 1.02960004 2.10339785
#> 69 2.03823465 0.654320732 1.277032722 2.29525044 2.53412814 1.51712787
#> 70 -0.20250667 0.213155497 1.337860721 0.43486175 1.61599417 1.39528062
#> 71 0.82448322 0.180353110 -1.430270245 -0.30064557 0.56909209 1.12032389
#> 72 1.70980177 1.371194700 2.406439541 -0.17450618 1.80849261 -0.31276376
#> 73 0.46912511 0.207248041 0.112389484 0.33087409 2.31663838 1.21793320
#> 74 0.86465865 0.654477007 1.441556058 1.02219381 2.45161737 1.13355408
#> 75 0.91113580 0.882585915 0.450350377 0.01045436 2.22567289 1.21228962
#> 76 0.87926484 0.283824915 0.168281256 2.06337540 1.27932859 -1.51274244
#> 77 2.42907726 -0.003295331 0.245012886 1.62183910 0.66378049 2.05924828
#> 78 0.69938455 3.364062893 1.201520525 1.56605575 0.01440620 0.86853876
#> 79 1.34113381 1.903969928 0.363036108 1.90006928 0.45562589 2.54274721
#> 80 2.81163825 2.658749238 0.323114031 0.77066651 1.63613206 1.21669940
#> Series 7 Series 8 Series 9 Series 10
#> 1 0.85505494 3.91371591 0.98942111 0.19428752
#> 2 0.72848170 -0.60962376 1.88108433 1.63362545
#> 3 2.25262607 0.01751107 -1.67749574 2.21481436
#> 4 -0.78006982 0.48933195 1.79620347 0.29995128
#> 5 2.92579293 0.38117873 0.48538920 1.09179893
#> 6 1.61582847 -0.13977187 -2.03856976 0.22567676
#> 7 1.58505899 0.46368934 1.77696369 1.90747895
#> 8 -0.36244767 1.86970373 -0.57831478 -1.04241291
#> 9 -0.16788843 2.27819188 1.68408009 1.69154955
#> 10 1.78825532 0.17670473 0.96750101 -0.06905579
#> 11 0.79638630 1.82355658 2.16444998 -0.46970765
#> 12 1.17175879 0.68717926 1.18557708 2.66229690
#> 13 0.97827039 1.21522900 -0.11277775 0.82153004
#> 14 1.56374507 0.65963727 1.80440348 1.28718226
#> 15 0.76321697 -0.38048976 1.20848684 0.91861461
#> 16 1.05391798 2.50321203 1.35235972 1.57563848
#> 17 0.31255651 1.76727933 0.46222042 2.39190256
#> 18 0.17681827 1.09670182 0.54365509 0.73019364
#> 19 0.44079819 -0.54899892 -1.00079923 1.54502709
#> 20 0.91030261 1.99025535 2.29071377 0.22455937
#> 21 -0.31239889 0.11716066 1.75785227 2.04599941
#> 22 1.18857317 2.11598653 1.10785113 2.35656135
#> 23 0.09522516 -1.09890000 1.59356777 -0.61276485
#> 24 -0.34638129 2.05279721 1.11149809 1.90211785
#> 25 0.68182384 1.33247519 0.28028114 1.73332404
#> 26 0.45319854 -0.11823245 1.70003447 2.54327731
#> 27 1.16360222 2.93411500 2.35354562 0.58515503
#> 28 0.01356092 0.23022349 2.13331046 1.26926129
#> 29 1.66865272 2.02038894 2.11074333 1.58435749
#> 30 0.17115411 0.78157083 0.89827863 0.68346651
#> 31 1.66570148 0.87255867 0.52996908 0.21212636
#> 32 -0.89634956 0.76042865 -1.07028857 0.61946298
#> 33 2.25551925 -0.07730710 2.05413101 0.93412275
#> 34 0.55883657 -0.78824814 1.22819036 -0.09929003
#> 35 2.80619254 -0.18593829 -0.70573457 -0.56296418
#> 36 0.40800620 1.09284674 -0.15669929 -0.16340657
#> 37 1.88950391 0.02285816 1.25275921 1.95261152
#> 38 1.18467150 1.07814076 1.46123347 1.89518638
#> 39 3.40058614 1.64947199 1.23982474 1.37366894
#> 40 -0.60291203 2.96577802 1.27435099 0.36342315
#> 41 1.79416950 -0.08485201 1.55414240 0.74210636
#> 42 0.48778065 0.25138833 2.11973175 0.63214593
#> 43 -0.07866404 -1.60315888 1.58706314 3.53679844
#> 44 1.07005877 0.66287890 3.43790459 1.91911025
#> 45 0.92795131 0.53912555 0.01947789 0.84162627
#> 46 1.02028741 3.38797802 0.76937009 1.12088276
#> 47 0.88452044 1.52196707 1.00042240 -0.45226374
#> 48 -0.20934950 1.03698765 0.33467700 1.29205312
#> 49 -0.10762520 -0.63649277 0.88391871 0.09264714
#> 50 1.77776598 0.50837405 0.80914416 0.37013699
#> 51 1.29708561 1.89786074 1.37809278 0.83128843
#> 52 -1.23586938 1.70222734 0.21292087 0.35790268
#> 53 0.73057350 -1.34641829 0.34107469 0.25264315
#> 54 1.80402475 0.90354444 2.22629344 0.10179832
#> 55 -0.09518811 1.28584865 1.98574531 2.95447612
#> 56 0.02116943 2.27015607 2.90747707 -2.51178876
#> 57 0.75269527 -0.79585602 0.47469585 2.60194143
#> 58 1.00735801 0.47228407 1.57201134 0.43827222
#> 59 0.54823456 1.59725987 1.45826381 2.05537311
#> 60 -0.03348150 3.75767673 1.29687349 0.87961405
#> 61 2.55854567 2.52794529 0.04065551 0.33866323
#> 62 1.54165973 2.95546755 1.29645417 -0.33659460
#> 63 0.17645766 0.33503500 1.05424069 1.35096380
#> 64 2.07253001 -1.44750391 -0.71805934 0.73086714
#> 65 -0.46561815 -0.21332951 2.95746011 -0.15953117
#> 66 0.75260718 1.39157383 -0.32167992 1.59336963
#> 67 1.15098622 1.21169905 -0.55743786 -0.19719721
#> 68 2.43533756 -0.19817043 2.46791159 0.81850573
#> 69 2.86002736 0.47833999 0.96273726 -0.01392764
#> 70 0.78241759 0.90047440 1.10788248 1.43907960
#> 71 0.15803445 1.16385385 1.77717612 2.55008375
#> 72 1.27653493 -0.78445452 0.07902372 -0.05446601
#> 73 0.19517838 0.47564812 2.38264151 -0.29034513
#> 74 0.32338238 -0.31142110 2.29459293 0.82536649
#> 75 1.94666605 0.83778725 1.86281467 0.49043168
#> 76 1.38864955 -0.46483909 2.22605321 0.40146523
#> 77 1.70864246 0.14608079 1.36502343 0.02282874
#> 78 1.69960394 1.60676966 0.73658556 1.92849899
#> 79 1.52521772 1.40285543 1.62074063 3.22382898
#> 80 0.67784463 1.25943923 1.23617040 0.16295846
#>
#> $nmodels
#> [1] 10
#>
#> $modelnames
#> [1] "Series 1" "Series 2" "Series 3" "Series 4" "Series 5" "Series 6"
#> [7] "Series 7" "Series 8" "Series 9" "Series 10"
#>
#> attr(,"class")
#> [1] "foreccomb"
## Example with a training set and future individual forecasts:
foreccomb(train_o, train_p, newpreds=test_p)
#> $Actual_Train
#> Time Series:
#> Start = 1
#> End = 80
#> Frequency = 1
#> [1] 0.43400756 -0.60936755 1.73788479 0.17019650 -0.60997495 -0.88493843
#> [7] -3.04292016 -0.80547635 1.48667223 -0.81349723 -0.98581235 0.32692250
#> [13] -1.14354994 1.11520398 0.16205873 -1.45973711 0.88362320 -0.95163208
#> [19] 0.48773017 0.61218570 -0.66860373 -0.31831967 -1.16119564 0.60003441
#> [25] -1.49167669 -1.05530366 0.11894684 -0.25818750 -0.84677252 2.07398325
#> [31] -0.60831152 0.78335902 0.45210259 -1.05652325 -0.30095115 0.20361402
#> [37] -1.36169564 0.11097343 -1.11684970 1.66399814 0.06007734 1.35932805
#> [43] 1.13993162 1.04056666 1.44447337 -1.09509360 -0.20536797 -0.22885541
#> [49] -1.06064057 -1.42084892 1.61972024 0.05055291 -0.73095552 -0.02253699
#> [55] 1.22242238 -1.30657291 0.64185024 -0.20405723 0.45268331 -0.81430453
#> [61] -1.11999100 0.61961511 -0.18541009 0.25505837 -0.11288202 0.10624340
#> [67] 1.27289077 -0.65136265 0.05857765 0.54267087 1.28711792 -1.22413234
#> [73] -0.26025788 1.88077852 0.97105882 0.11126840 -1.57443516 1.30479528
#> [79] 0.77987831 -0.50060114
#>
#> $Forecasts_Train
#> Time Series:
#> Start = 1
#> End = 80
#> Frequency = 1
#> Series 1 Series 2 Series 3 Series 4 Series 5 Series 6
#> 1 0.49035870 0.900280120 3.149106584 0.46437044 1.71035305 0.33958138
#> 2 1.29856014 -0.241495179 1.767830806 0.85851602 1.67950686 2.57436136
#> 3 0.28742452 0.002112943 2.049470658 0.63612821 2.27472718 0.82215308
#> 4 0.26586712 0.252073962 1.027658636 2.51242817 -0.55670766 1.28138024
#> 5 1.06403760 2.166644019 1.526688482 -0.98958234 -0.75659683 -0.28676256
#> 6 0.72273245 1.019240683 -0.005815529 0.91806524 -0.73411887 0.99314071
#> 7 0.40760472 1.401171394 3.197404454 2.31845039 -0.91714470 2.60080835
#> 8 1.69111890 1.069845467 0.702314124 1.32960310 0.14908582 0.60056549
#> 9 0.53254793 -1.205506173 -0.163425224 1.07887669 0.43436698 2.21667485
#> 10 1.55818258 1.464048908 -0.560937779 0.96632378 0.59304219 0.11642798
#> 11 0.34223086 0.895949751 1.097984141 0.57108564 2.36118225 -0.17334560
#> 12 1.90763130 0.627971660 2.329258487 0.23239814 1.48491225 1.06812522
#> 13 1.55607918 1.379200372 -0.110599691 0.84442977 3.08698121 1.17980929
#> 14 -0.80581475 -1.004890326 2.010167512 2.00865252 1.46893454 1.05667256
#> 15 0.87430724 2.115190217 2.068816561 0.33768070 2.18911369 0.79610998
#> 16 2.14699845 2.613408288 -0.187365519 2.58519311 1.71322852 0.48814835
#> 17 2.62758961 1.568510929 1.708963397 0.60726478 2.85862373 1.63591495
#> 18 1.02754292 1.534428918 0.702916655 1.84197242 2.28961667 0.59101182
#> 19 -0.80362627 2.074658756 1.503916904 0.26679451 1.08495291 0.12775184
#> 20 3.19379384 0.086029912 1.429044295 2.91702809 0.88090793 0.09030641
#> 21 1.15147619 -0.196600889 1.038899464 2.08631377 2.84641728 0.02171143
#> 22 0.11329226 -0.051354817 -0.270471957 0.75203685 1.72469559 1.06147517
#> 23 -0.52730675 -0.644431851 1.336518748 2.68951417 0.50385051 2.02049362
#> 24 1.06343685 1.340013101 0.816299130 0.31409716 -0.09552238 0.89251584
#> 25 2.44035374 1.826320050 0.250284052 0.31616172 2.33152044 0.56948658
#> 26 0.61124939 0.147818461 1.100501383 0.07936381 2.11960963 -0.16021862
#> 27 1.16547789 1.662488840 -1.054171126 2.44943900 1.36484498 1.06396381
#> 28 0.65561619 2.596515342 2.804254467 1.76861728 -0.76243445 0.28346271
#> 29 1.59548588 0.648740322 3.043544311 2.34751346 1.30873823 2.93396120
#> 30 -0.14925506 0.367000085 1.221017455 -0.01794408 0.53307285 -0.09841434
#> 31 0.20209834 2.060188650 1.416987156 1.25954334 -1.26358591 0.50231918
#> 32 0.74339088 1.864128778 -0.133568286 0.32993216 1.93793288 -0.45490069
#> 33 0.07458618 -0.300486024 -0.357276791 -0.03109610 1.21784137 -1.32189721
#> 34 1.16581417 1.215292355 0.303869420 -0.17852637 0.53966693 0.54581364
#> 35 1.86729664 -0.010173163 0.916255662 -0.03674990 0.27750348 0.71456714
#> 36 1.17487414 2.798167464 -0.603860166 1.08169121 -0.34135847 1.72351212
#> 37 1.86361750 0.551169595 0.356379728 1.39451909 1.41614559 -0.27472929
#> 38 1.58464519 1.532836334 1.766030845 -0.09285101 2.04205620 1.40001639
#> 39 0.66919058 1.300832981 -0.568302346 1.05622671 0.79503770 1.49554501
#> 40 1.30578017 0.541273824 1.289982800 1.41616058 1.18654062 1.27708127
#> 41 0.96753762 -0.241957197 1.203216841 -0.50472343 -0.03517353 1.73085437
#> 42 3.84688023 3.978722899 0.282846256 -0.52705481 0.43860180 1.30048110
#> 43 1.49219553 0.551026149 0.502466673 1.70898499 2.21217630 -0.42535649
#> 44 1.43157315 0.822865021 1.408204053 0.27839911 1.44747061 -0.26097392
#> 45 1.30864534 2.136997979 1.382958103 2.66112171 -0.75693836 -0.10904965
#> 46 1.07332106 1.658319788 0.001486564 1.17064527 0.83317998 1.28915016
#> 47 1.83151376 1.097060723 1.910345038 0.42665777 0.05433657 0.40084826
#> 48 1.76206608 2.692937337 2.930613267 1.34124462 0.03187431 0.11171237
#> 49 0.86774028 -0.526270161 0.960831119 -0.03512074 1.29994442 0.62686894
#> 50 1.33256468 1.538898972 1.198609355 0.45814060 1.12740128 1.06682605
#> 51 -0.47332243 -0.134711092 0.658499779 2.10389238 0.28127889 2.20363134
#> 52 0.89825061 1.692757571 0.160376162 0.72750150 -0.53798220 0.85462936
#> 53 -0.71793245 0.209596475 2.715632975 2.07031297 2.22030106 1.84828597
#> 54 0.24569425 1.039674956 0.852893054 0.19913196 1.13654499 1.30626366
#> 55 0.40246995 1.554239163 0.794617003 0.70033910 0.27802854 0.55639267
#> 56 1.45619783 1.268076364 1.257291618 -0.41035644 -0.18956674 2.40499675
#> 57 -0.12867484 3.076600798 0.718096693 0.58409047 0.43987850 2.56109440
#> 58 2.39187213 0.953676226 0.437945903 2.13261053 0.96516226 0.89035456
#> 59 0.01381174 1.126990621 2.438027039 0.02707141 0.02924701 -0.28576661
#> 60 1.24736147 0.078583502 0.168934646 2.31967808 0.31784723 0.82667061
#> 61 0.52179143 -0.723432837 0.722708657 2.12845772 -0.65727594 1.07993430
#> 62 0.47616934 2.304859390 0.305688670 2.44005492 2.35437176 2.19821615
#> 63 1.06647309 0.999234408 2.425531551 0.37943573 -0.34087915 2.41264420
#> 64 2.99995832 1.165681695 0.517560044 0.76812127 0.14978533 1.13943035
#> 65 0.60378299 0.941669426 1.114673583 1.60123284 -0.46883665 2.18068910
#> 66 -0.61924429 1.384093132 2.105294105 0.44256679 1.11567925 1.70342419
#> 67 0.45119769 0.928279542 0.624233078 -0.33337714 1.14419836 1.67898783
#> 68 1.60586942 1.316623500 1.862004837 2.20678683 1.02960004 2.10339785
#> 69 2.03823465 0.654320732 1.277032722 2.29525044 2.53412814 1.51712787
#> 70 -0.20250667 0.213155497 1.337860721 0.43486175 1.61599417 1.39528062
#> 71 0.82448322 0.180353110 -1.430270245 -0.30064557 0.56909209 1.12032389
#> 72 1.70980177 1.371194700 2.406439541 -0.17450618 1.80849261 -0.31276376
#> 73 0.46912511 0.207248041 0.112389484 0.33087409 2.31663838 1.21793320
#> 74 0.86465865 0.654477007 1.441556058 1.02219381 2.45161737 1.13355408
#> 75 0.91113580 0.882585915 0.450350377 0.01045436 2.22567289 1.21228962
#> 76 0.87926484 0.283824915 0.168281256 2.06337540 1.27932859 -1.51274244
#> 77 2.42907726 -0.003295331 0.245012886 1.62183910 0.66378049 2.05924828
#> 78 0.69938455 3.364062893 1.201520525 1.56605575 0.01440620 0.86853876
#> 79 1.34113381 1.903969928 0.363036108 1.90006928 0.45562589 2.54274721
#> 80 2.81163825 2.658749238 0.323114031 0.77066651 1.63613206 1.21669940
#> Series 7 Series 8 Series 9 Series 10
#> 1 0.85505494 3.91371591 0.98942111 0.19428752
#> 2 0.72848170 -0.60962376 1.88108433 1.63362545
#> 3 2.25262607 0.01751107 -1.67749574 2.21481436
#> 4 -0.78006982 0.48933195 1.79620347 0.29995128
#> 5 2.92579293 0.38117873 0.48538920 1.09179893
#> 6 1.61582847 -0.13977187 -2.03856976 0.22567676
#> 7 1.58505899 0.46368934 1.77696369 1.90747895
#> 8 -0.36244767 1.86970373 -0.57831478 -1.04241291
#> 9 -0.16788843 2.27819188 1.68408009 1.69154955
#> 10 1.78825532 0.17670473 0.96750101 -0.06905579
#> 11 0.79638630 1.82355658 2.16444998 -0.46970765
#> 12 1.17175879 0.68717926 1.18557708 2.66229690
#> 13 0.97827039 1.21522900 -0.11277775 0.82153004
#> 14 1.56374507 0.65963727 1.80440348 1.28718226
#> 15 0.76321697 -0.38048976 1.20848684 0.91861461
#> 16 1.05391798 2.50321203 1.35235972 1.57563848
#> 17 0.31255651 1.76727933 0.46222042 2.39190256
#> 18 0.17681827 1.09670182 0.54365509 0.73019364
#> 19 0.44079819 -0.54899892 -1.00079923 1.54502709
#> 20 0.91030261 1.99025535 2.29071377 0.22455937
#> 21 -0.31239889 0.11716066 1.75785227 2.04599941
#> 22 1.18857317 2.11598653 1.10785113 2.35656135
#> 23 0.09522516 -1.09890000 1.59356777 -0.61276485
#> 24 -0.34638129 2.05279721 1.11149809 1.90211785
#> 25 0.68182384 1.33247519 0.28028114 1.73332404
#> 26 0.45319854 -0.11823245 1.70003447 2.54327731
#> 27 1.16360222 2.93411500 2.35354562 0.58515503
#> 28 0.01356092 0.23022349 2.13331046 1.26926129
#> 29 1.66865272 2.02038894 2.11074333 1.58435749
#> 30 0.17115411 0.78157083 0.89827863 0.68346651
#> 31 1.66570148 0.87255867 0.52996908 0.21212636
#> 32 -0.89634956 0.76042865 -1.07028857 0.61946298
#> 33 2.25551925 -0.07730710 2.05413101 0.93412275
#> 34 0.55883657 -0.78824814 1.22819036 -0.09929003
#> 35 2.80619254 -0.18593829 -0.70573457 -0.56296418
#> 36 0.40800620 1.09284674 -0.15669929 -0.16340657
#> 37 1.88950391 0.02285816 1.25275921 1.95261152
#> 38 1.18467150 1.07814076 1.46123347 1.89518638
#> 39 3.40058614 1.64947199 1.23982474 1.37366894
#> 40 -0.60291203 2.96577802 1.27435099 0.36342315
#> 41 1.79416950 -0.08485201 1.55414240 0.74210636
#> 42 0.48778065 0.25138833 2.11973175 0.63214593
#> 43 -0.07866404 -1.60315888 1.58706314 3.53679844
#> 44 1.07005877 0.66287890 3.43790459 1.91911025
#> 45 0.92795131 0.53912555 0.01947789 0.84162627
#> 46 1.02028741 3.38797802 0.76937009 1.12088276
#> 47 0.88452044 1.52196707 1.00042240 -0.45226374
#> 48 -0.20934950 1.03698765 0.33467700 1.29205312
#> 49 -0.10762520 -0.63649277 0.88391871 0.09264714
#> 50 1.77776598 0.50837405 0.80914416 0.37013699
#> 51 1.29708561 1.89786074 1.37809278 0.83128843
#> 52 -1.23586938 1.70222734 0.21292087 0.35790268
#> 53 0.73057350 -1.34641829 0.34107469 0.25264315
#> 54 1.80402475 0.90354444 2.22629344 0.10179832
#> 55 -0.09518811 1.28584865 1.98574531 2.95447612
#> 56 0.02116943 2.27015607 2.90747707 -2.51178876
#> 57 0.75269527 -0.79585602 0.47469585 2.60194143
#> 58 1.00735801 0.47228407 1.57201134 0.43827222
#> 59 0.54823456 1.59725987 1.45826381 2.05537311
#> 60 -0.03348150 3.75767673 1.29687349 0.87961405
#> 61 2.55854567 2.52794529 0.04065551 0.33866323
#> 62 1.54165973 2.95546755 1.29645417 -0.33659460
#> 63 0.17645766 0.33503500 1.05424069 1.35096380
#> 64 2.07253001 -1.44750391 -0.71805934 0.73086714
#> 65 -0.46561815 -0.21332951 2.95746011 -0.15953117
#> 66 0.75260718 1.39157383 -0.32167992 1.59336963
#> 67 1.15098622 1.21169905 -0.55743786 -0.19719721
#> 68 2.43533756 -0.19817043 2.46791159 0.81850573
#> 69 2.86002736 0.47833999 0.96273726 -0.01392764
#> 70 0.78241759 0.90047440 1.10788248 1.43907960
#> 71 0.15803445 1.16385385 1.77717612 2.55008375
#> 72 1.27653493 -0.78445452 0.07902372 -0.05446601
#> 73 0.19517838 0.47564812 2.38264151 -0.29034513
#> 74 0.32338238 -0.31142110 2.29459293 0.82536649
#> 75 1.94666605 0.83778725 1.86281467 0.49043168
#> 76 1.38864955 -0.46483909 2.22605321 0.40146523
#> 77 1.70864246 0.14608079 1.36502343 0.02282874
#> 78 1.69960394 1.60676966 0.73658556 1.92849899
#> 79 1.52521772 1.40285543 1.62074063 3.22382898
#> 80 0.67784463 1.25943923 1.23617040 0.16295846
#>
#> $Forecasts_Test
#> Series 1 Series 2 Series 3 Series 4 Series 5 Series 6
#> [1,] 1.0396779 -0.1547477 0.94766255 0.6166052 1.73137508 1.749505054
#> [2,] 1.1105157 1.7950136 1.14346187 1.6025761 0.54149575 1.366898378
#> [3,] 0.7637506 -1.0685581 -0.08246236 0.9373998 1.67573909 1.070557906
#> [4,] -0.7623823 -0.1847903 0.27940594 0.3387729 1.48134055 2.672766891
#> [5,] 0.1288254 -0.6132547 0.42300595 0.7817999 1.87164060 -0.002845736
#> [6,] 1.4834304 1.9101009 0.23729651 0.1702420 -0.65184283 0.299514286
#> [7,] 0.2179225 -0.7385002 1.59892196 0.9275215 1.33491255 1.222422616
#> [8,] -1.2733756 0.2470395 -0.06904203 1.5575982 1.79522903 1.086031224
#> [9,] 0.5590132 0.8532531 1.14801652 1.8710160 1.18263895 2.365382178
#> [10,] 2.4342722 1.6043699 0.32728917 3.2087845 -1.60719862 2.182661131
#> [11,] 1.3154555 1.1059816 1.49144813 0.8274347 0.37433506 -0.191384046
#> [12,] 0.1531057 1.3636265 1.41103370 3.3807557 0.07139792 0.243370008
#> [13,] 0.6979055 -1.2948465 1.18207505 1.3422611 0.74328247 0.565966297
#> [14,] -0.1842124 -0.3674118 0.70430033 -0.4685462 1.93460094 2.451656541
#> [15,] 1.1265487 0.4436025 0.47320421 0.6035392 -0.43030460 -1.053324277
#> [16,] 1.4231193 0.5327091 1.82319335 0.6823043 2.44524355 -0.726470671
#> [17,] 0.8334510 1.9400414 0.11962566 0.5335695 1.35620516 0.469767247
#> [18,] -0.1161532 3.0370221 2.60440410 1.3173283 1.54267112 0.097174697
#> [19,] 0.9343619 2.1490702 0.43110564 1.0497441 1.35252560 2.564368980
#> [20,] 1.0706427 1.6612350 0.72623504 0.8931920 -0.25242527 -0.215037302
#> Series 7 Series 8 Series 9 Series 10
#> [1,] 1.7309048 1.8601615 2.100889241 -0.3009883
#> [2,] 0.1200523 2.5844173 1.110309145 -0.2868684
#> [3,] 0.7150072 2.5345918 0.672476901 2.0869902
#> [4,] 1.2491122 1.0006277 2.409821716 0.2162513
#> [5,] 1.3617060 0.7439716 1.619293386 1.6300958
#> [6,] 1.2758282 1.1639578 -0.124764889 0.1194568
#> [7,] -0.9108016 0.8437130 2.010754374 2.1770847
#> [8,] 0.4594004 0.7566662 1.351167205 -1.5815672
#> [9,] 1.7937665 1.9191180 1.577288619 0.8546950
#> [10,] 1.2798317 -1.0798848 1.212641960 1.1435343
#> [11,] 1.6575819 2.4445059 0.009767569 0.4094421
#> [12,] 1.0331844 0.7894211 -1.366822278 -0.3941232
#> [13,] 0.9895685 1.8263824 -0.530007326 0.3747736
#> [14,] 1.5624163 0.7254844 0.519938649 1.2070607
#> [15,] 1.4844774 1.2411993 1.255845161 1.9141898
#> [16,] 1.3055481 1.5785884 -1.072573471 2.2720648
#> [17,] 1.3932659 2.1598189 1.206692008 1.4849038
#> [18,] 2.6023967 1.9298885 2.417626146 1.8623553
#> [19,] 0.8235486 0.9438242 3.012584580 0.9878838
#> [20,] 0.7109637 -0.3230244 0.623181569 1.4882737
#>
#> $nmodels
#> [1] 10
#>
#> $modelnames
#> [1] "Series 1" "Series 2" "Series 3" "Series 4" "Series 5" "Series 6"
#> [7] "Series 7" "Series 8" "Series 9" "Series 10"
#>
#> attr(,"class")
#> [1] "foreccomb"
## Example with a training set and a full test set:
foreccomb(train_o, train_p, test_o, test_p)
#> $Actual_Train
#> Time Series:
#> Start = 1
#> End = 80
#> Frequency = 1
#> [1] 0.43400756 -0.60936755 1.73788479 0.17019650 -0.60997495 -0.88493843
#> [7] -3.04292016 -0.80547635 1.48667223 -0.81349723 -0.98581235 0.32692250
#> [13] -1.14354994 1.11520398 0.16205873 -1.45973711 0.88362320 -0.95163208
#> [19] 0.48773017 0.61218570 -0.66860373 -0.31831967 -1.16119564 0.60003441
#> [25] -1.49167669 -1.05530366 0.11894684 -0.25818750 -0.84677252 2.07398325
#> [31] -0.60831152 0.78335902 0.45210259 -1.05652325 -0.30095115 0.20361402
#> [37] -1.36169564 0.11097343 -1.11684970 1.66399814 0.06007734 1.35932805
#> [43] 1.13993162 1.04056666 1.44447337 -1.09509360 -0.20536797 -0.22885541
#> [49] -1.06064057 -1.42084892 1.61972024 0.05055291 -0.73095552 -0.02253699
#> [55] 1.22242238 -1.30657291 0.64185024 -0.20405723 0.45268331 -0.81430453
#> [61] -1.11999100 0.61961511 -0.18541009 0.25505837 -0.11288202 0.10624340
#> [67] 1.27289077 -0.65136265 0.05857765 0.54267087 1.28711792 -1.22413234
#> [73] -0.26025788 1.88077852 0.97105882 0.11126840 -1.57443516 1.30479528
#> [79] 0.77987831 -0.50060114
#>
#> $Forecasts_Train
#> Time Series:
#> Start = 1
#> End = 80
#> Frequency = 1
#> Series 1 Series 2 Series 3 Series 4 Series 5 Series 6
#> 1 0.49035870 0.900280120 3.149106584 0.46437044 1.71035305 0.33958138
#> 2 1.29856014 -0.241495179 1.767830806 0.85851602 1.67950686 2.57436136
#> 3 0.28742452 0.002112943 2.049470658 0.63612821 2.27472718 0.82215308
#> 4 0.26586712 0.252073962 1.027658636 2.51242817 -0.55670766 1.28138024
#> 5 1.06403760 2.166644019 1.526688482 -0.98958234 -0.75659683 -0.28676256
#> 6 0.72273245 1.019240683 -0.005815529 0.91806524 -0.73411887 0.99314071
#> 7 0.40760472 1.401171394 3.197404454 2.31845039 -0.91714470 2.60080835
#> 8 1.69111890 1.069845467 0.702314124 1.32960310 0.14908582 0.60056549
#> 9 0.53254793 -1.205506173 -0.163425224 1.07887669 0.43436698 2.21667485
#> 10 1.55818258 1.464048908 -0.560937779 0.96632378 0.59304219 0.11642798
#> 11 0.34223086 0.895949751 1.097984141 0.57108564 2.36118225 -0.17334560
#> 12 1.90763130 0.627971660 2.329258487 0.23239814 1.48491225 1.06812522
#> 13 1.55607918 1.379200372 -0.110599691 0.84442977 3.08698121 1.17980929
#> 14 -0.80581475 -1.004890326 2.010167512 2.00865252 1.46893454 1.05667256
#> 15 0.87430724 2.115190217 2.068816561 0.33768070 2.18911369 0.79610998
#> 16 2.14699845 2.613408288 -0.187365519 2.58519311 1.71322852 0.48814835
#> 17 2.62758961 1.568510929 1.708963397 0.60726478 2.85862373 1.63591495
#> 18 1.02754292 1.534428918 0.702916655 1.84197242 2.28961667 0.59101182
#> 19 -0.80362627 2.074658756 1.503916904 0.26679451 1.08495291 0.12775184
#> 20 3.19379384 0.086029912 1.429044295 2.91702809 0.88090793 0.09030641
#> 21 1.15147619 -0.196600889 1.038899464 2.08631377 2.84641728 0.02171143
#> 22 0.11329226 -0.051354817 -0.270471957 0.75203685 1.72469559 1.06147517
#> 23 -0.52730675 -0.644431851 1.336518748 2.68951417 0.50385051 2.02049362
#> 24 1.06343685 1.340013101 0.816299130 0.31409716 -0.09552238 0.89251584
#> 25 2.44035374 1.826320050 0.250284052 0.31616172 2.33152044 0.56948658
#> 26 0.61124939 0.147818461 1.100501383 0.07936381 2.11960963 -0.16021862
#> 27 1.16547789 1.662488840 -1.054171126 2.44943900 1.36484498 1.06396381
#> 28 0.65561619 2.596515342 2.804254467 1.76861728 -0.76243445 0.28346271
#> 29 1.59548588 0.648740322 3.043544311 2.34751346 1.30873823 2.93396120
#> 30 -0.14925506 0.367000085 1.221017455 -0.01794408 0.53307285 -0.09841434
#> 31 0.20209834 2.060188650 1.416987156 1.25954334 -1.26358591 0.50231918
#> 32 0.74339088 1.864128778 -0.133568286 0.32993216 1.93793288 -0.45490069
#> 33 0.07458618 -0.300486024 -0.357276791 -0.03109610 1.21784137 -1.32189721
#> 34 1.16581417 1.215292355 0.303869420 -0.17852637 0.53966693 0.54581364
#> 35 1.86729664 -0.010173163 0.916255662 -0.03674990 0.27750348 0.71456714
#> 36 1.17487414 2.798167464 -0.603860166 1.08169121 -0.34135847 1.72351212
#> 37 1.86361750 0.551169595 0.356379728 1.39451909 1.41614559 -0.27472929
#> 38 1.58464519 1.532836334 1.766030845 -0.09285101 2.04205620 1.40001639
#> 39 0.66919058 1.300832981 -0.568302346 1.05622671 0.79503770 1.49554501
#> 40 1.30578017 0.541273824 1.289982800 1.41616058 1.18654062 1.27708127
#> 41 0.96753762 -0.241957197 1.203216841 -0.50472343 -0.03517353 1.73085437
#> 42 3.84688023 3.978722899 0.282846256 -0.52705481 0.43860180 1.30048110
#> 43 1.49219553 0.551026149 0.502466673 1.70898499 2.21217630 -0.42535649
#> 44 1.43157315 0.822865021 1.408204053 0.27839911 1.44747061 -0.26097392
#> 45 1.30864534 2.136997979 1.382958103 2.66112171 -0.75693836 -0.10904965
#> 46 1.07332106 1.658319788 0.001486564 1.17064527 0.83317998 1.28915016
#> 47 1.83151376 1.097060723 1.910345038 0.42665777 0.05433657 0.40084826
#> 48 1.76206608 2.692937337 2.930613267 1.34124462 0.03187431 0.11171237
#> 49 0.86774028 -0.526270161 0.960831119 -0.03512074 1.29994442 0.62686894
#> 50 1.33256468 1.538898972 1.198609355 0.45814060 1.12740128 1.06682605
#> 51 -0.47332243 -0.134711092 0.658499779 2.10389238 0.28127889 2.20363134
#> 52 0.89825061 1.692757571 0.160376162 0.72750150 -0.53798220 0.85462936
#> 53 -0.71793245 0.209596475 2.715632975 2.07031297 2.22030106 1.84828597
#> 54 0.24569425 1.039674956 0.852893054 0.19913196 1.13654499 1.30626366
#> 55 0.40246995 1.554239163 0.794617003 0.70033910 0.27802854 0.55639267
#> 56 1.45619783 1.268076364 1.257291618 -0.41035644 -0.18956674 2.40499675
#> 57 -0.12867484 3.076600798 0.718096693 0.58409047 0.43987850 2.56109440
#> 58 2.39187213 0.953676226 0.437945903 2.13261053 0.96516226 0.89035456
#> 59 0.01381174 1.126990621 2.438027039 0.02707141 0.02924701 -0.28576661
#> 60 1.24736147 0.078583502 0.168934646 2.31967808 0.31784723 0.82667061
#> 61 0.52179143 -0.723432837 0.722708657 2.12845772 -0.65727594 1.07993430
#> 62 0.47616934 2.304859390 0.305688670 2.44005492 2.35437176 2.19821615
#> 63 1.06647309 0.999234408 2.425531551 0.37943573 -0.34087915 2.41264420
#> 64 2.99995832 1.165681695 0.517560044 0.76812127 0.14978533 1.13943035
#> 65 0.60378299 0.941669426 1.114673583 1.60123284 -0.46883665 2.18068910
#> 66 -0.61924429 1.384093132 2.105294105 0.44256679 1.11567925 1.70342419
#> 67 0.45119769 0.928279542 0.624233078 -0.33337714 1.14419836 1.67898783
#> 68 1.60586942 1.316623500 1.862004837 2.20678683 1.02960004 2.10339785
#> 69 2.03823465 0.654320732 1.277032722 2.29525044 2.53412814 1.51712787
#> 70 -0.20250667 0.213155497 1.337860721 0.43486175 1.61599417 1.39528062
#> 71 0.82448322 0.180353110 -1.430270245 -0.30064557 0.56909209 1.12032389
#> 72 1.70980177 1.371194700 2.406439541 -0.17450618 1.80849261 -0.31276376
#> 73 0.46912511 0.207248041 0.112389484 0.33087409 2.31663838 1.21793320
#> 74 0.86465865 0.654477007 1.441556058 1.02219381 2.45161737 1.13355408
#> 75 0.91113580 0.882585915 0.450350377 0.01045436 2.22567289 1.21228962
#> 76 0.87926484 0.283824915 0.168281256 2.06337540 1.27932859 -1.51274244
#> 77 2.42907726 -0.003295331 0.245012886 1.62183910 0.66378049 2.05924828
#> 78 0.69938455 3.364062893 1.201520525 1.56605575 0.01440620 0.86853876
#> 79 1.34113381 1.903969928 0.363036108 1.90006928 0.45562589 2.54274721
#> 80 2.81163825 2.658749238 0.323114031 0.77066651 1.63613206 1.21669940
#> Series 7 Series 8 Series 9 Series 10
#> 1 0.85505494 3.91371591 0.98942111 0.19428752
#> 2 0.72848170 -0.60962376 1.88108433 1.63362545
#> 3 2.25262607 0.01751107 -1.67749574 2.21481436
#> 4 -0.78006982 0.48933195 1.79620347 0.29995128
#> 5 2.92579293 0.38117873 0.48538920 1.09179893
#> 6 1.61582847 -0.13977187 -2.03856976 0.22567676
#> 7 1.58505899 0.46368934 1.77696369 1.90747895
#> 8 -0.36244767 1.86970373 -0.57831478 -1.04241291
#> 9 -0.16788843 2.27819188 1.68408009 1.69154955
#> 10 1.78825532 0.17670473 0.96750101 -0.06905579
#> 11 0.79638630 1.82355658 2.16444998 -0.46970765
#> 12 1.17175879 0.68717926 1.18557708 2.66229690
#> 13 0.97827039 1.21522900 -0.11277775 0.82153004
#> 14 1.56374507 0.65963727 1.80440348 1.28718226
#> 15 0.76321697 -0.38048976 1.20848684 0.91861461
#> 16 1.05391798 2.50321203 1.35235972 1.57563848
#> 17 0.31255651 1.76727933 0.46222042 2.39190256
#> 18 0.17681827 1.09670182 0.54365509 0.73019364
#> 19 0.44079819 -0.54899892 -1.00079923 1.54502709
#> 20 0.91030261 1.99025535 2.29071377 0.22455937
#> 21 -0.31239889 0.11716066 1.75785227 2.04599941
#> 22 1.18857317 2.11598653 1.10785113 2.35656135
#> 23 0.09522516 -1.09890000 1.59356777 -0.61276485
#> 24 -0.34638129 2.05279721 1.11149809 1.90211785
#> 25 0.68182384 1.33247519 0.28028114 1.73332404
#> 26 0.45319854 -0.11823245 1.70003447 2.54327731
#> 27 1.16360222 2.93411500 2.35354562 0.58515503
#> 28 0.01356092 0.23022349 2.13331046 1.26926129
#> 29 1.66865272 2.02038894 2.11074333 1.58435749
#> 30 0.17115411 0.78157083 0.89827863 0.68346651
#> 31 1.66570148 0.87255867 0.52996908 0.21212636
#> 32 -0.89634956 0.76042865 -1.07028857 0.61946298
#> 33 2.25551925 -0.07730710 2.05413101 0.93412275
#> 34 0.55883657 -0.78824814 1.22819036 -0.09929003
#> 35 2.80619254 -0.18593829 -0.70573457 -0.56296418
#> 36 0.40800620 1.09284674 -0.15669929 -0.16340657
#> 37 1.88950391 0.02285816 1.25275921 1.95261152
#> 38 1.18467150 1.07814076 1.46123347 1.89518638
#> 39 3.40058614 1.64947199 1.23982474 1.37366894
#> 40 -0.60291203 2.96577802 1.27435099 0.36342315
#> 41 1.79416950 -0.08485201 1.55414240 0.74210636
#> 42 0.48778065 0.25138833 2.11973175 0.63214593
#> 43 -0.07866404 -1.60315888 1.58706314 3.53679844
#> 44 1.07005877 0.66287890 3.43790459 1.91911025
#> 45 0.92795131 0.53912555 0.01947789 0.84162627
#> 46 1.02028741 3.38797802 0.76937009 1.12088276
#> 47 0.88452044 1.52196707 1.00042240 -0.45226374
#> 48 -0.20934950 1.03698765 0.33467700 1.29205312
#> 49 -0.10762520 -0.63649277 0.88391871 0.09264714
#> 50 1.77776598 0.50837405 0.80914416 0.37013699
#> 51 1.29708561 1.89786074 1.37809278 0.83128843
#> 52 -1.23586938 1.70222734 0.21292087 0.35790268
#> 53 0.73057350 -1.34641829 0.34107469 0.25264315
#> 54 1.80402475 0.90354444 2.22629344 0.10179832
#> 55 -0.09518811 1.28584865 1.98574531 2.95447612
#> 56 0.02116943 2.27015607 2.90747707 -2.51178876
#> 57 0.75269527 -0.79585602 0.47469585 2.60194143
#> 58 1.00735801 0.47228407 1.57201134 0.43827222
#> 59 0.54823456 1.59725987 1.45826381 2.05537311
#> 60 -0.03348150 3.75767673 1.29687349 0.87961405
#> 61 2.55854567 2.52794529 0.04065551 0.33866323
#> 62 1.54165973 2.95546755 1.29645417 -0.33659460
#> 63 0.17645766 0.33503500 1.05424069 1.35096380
#> 64 2.07253001 -1.44750391 -0.71805934 0.73086714
#> 65 -0.46561815 -0.21332951 2.95746011 -0.15953117
#> 66 0.75260718 1.39157383 -0.32167992 1.59336963
#> 67 1.15098622 1.21169905 -0.55743786 -0.19719721
#> 68 2.43533756 -0.19817043 2.46791159 0.81850573
#> 69 2.86002736 0.47833999 0.96273726 -0.01392764
#> 70 0.78241759 0.90047440 1.10788248 1.43907960
#> 71 0.15803445 1.16385385 1.77717612 2.55008375
#> 72 1.27653493 -0.78445452 0.07902372 -0.05446601
#> 73 0.19517838 0.47564812 2.38264151 -0.29034513
#> 74 0.32338238 -0.31142110 2.29459293 0.82536649
#> 75 1.94666605 0.83778725 1.86281467 0.49043168
#> 76 1.38864955 -0.46483909 2.22605321 0.40146523
#> 77 1.70864246 0.14608079 1.36502343 0.02282874
#> 78 1.69960394 1.60676966 0.73658556 1.92849899
#> 79 1.52521772 1.40285543 1.62074063 3.22382898
#> 80 0.67784463 1.25943923 1.23617040 0.16295846
#>
#> $Actual_Test
#> [1] 0.66603289 0.56441285 0.46899029 -1.80083548 -0.88404006 -0.10691764
#> [7] 0.46453925 -0.74730054 1.03602601 0.46495443 0.27270493 1.55359254
#> [13] -1.03640646 0.43625003 0.07974220 1.60076251 -0.84577204 -1.62540401
#> [19] -0.13368028 0.01825332
#>
#> $Forecasts_Test
#> Series 1 Series 2 Series 3 Series 4 Series 5 Series 6
#> [1,] 1.0396779 -0.1547477 0.94766255 0.6166052 1.73137508 1.749505054
#> [2,] 1.1105157 1.7950136 1.14346187 1.6025761 0.54149575 1.366898378
#> [3,] 0.7637506 -1.0685581 -0.08246236 0.9373998 1.67573909 1.070557906
#> [4,] -0.7623823 -0.1847903 0.27940594 0.3387729 1.48134055 2.672766891
#> [5,] 0.1288254 -0.6132547 0.42300595 0.7817999 1.87164060 -0.002845736
#> [6,] 1.4834304 1.9101009 0.23729651 0.1702420 -0.65184283 0.299514286
#> [7,] 0.2179225 -0.7385002 1.59892196 0.9275215 1.33491255 1.222422616
#> [8,] -1.2733756 0.2470395 -0.06904203 1.5575982 1.79522903 1.086031224
#> [9,] 0.5590132 0.8532531 1.14801652 1.8710160 1.18263895 2.365382178
#> [10,] 2.4342722 1.6043699 0.32728917 3.2087845 -1.60719862 2.182661131
#> [11,] 1.3154555 1.1059816 1.49144813 0.8274347 0.37433506 -0.191384046
#> [12,] 0.1531057 1.3636265 1.41103370 3.3807557 0.07139792 0.243370008
#> [13,] 0.6979055 -1.2948465 1.18207505 1.3422611 0.74328247 0.565966297
#> [14,] -0.1842124 -0.3674118 0.70430033 -0.4685462 1.93460094 2.451656541
#> [15,] 1.1265487 0.4436025 0.47320421 0.6035392 -0.43030460 -1.053324277
#> [16,] 1.4231193 0.5327091 1.82319335 0.6823043 2.44524355 -0.726470671
#> [17,] 0.8334510 1.9400414 0.11962566 0.5335695 1.35620516 0.469767247
#> [18,] -0.1161532 3.0370221 2.60440410 1.3173283 1.54267112 0.097174697
#> [19,] 0.9343619 2.1490702 0.43110564 1.0497441 1.35252560 2.564368980
#> [20,] 1.0706427 1.6612350 0.72623504 0.8931920 -0.25242527 -0.215037302
#> Series 7 Series 8 Series 9 Series 10
#> [1,] 1.7309048 1.8601615 2.100889241 -0.3009883
#> [2,] 0.1200523 2.5844173 1.110309145 -0.2868684
#> [3,] 0.7150072 2.5345918 0.672476901 2.0869902
#> [4,] 1.2491122 1.0006277 2.409821716 0.2162513
#> [5,] 1.3617060 0.7439716 1.619293386 1.6300958
#> [6,] 1.2758282 1.1639578 -0.124764889 0.1194568
#> [7,] -0.9108016 0.8437130 2.010754374 2.1770847
#> [8,] 0.4594004 0.7566662 1.351167205 -1.5815672
#> [9,] 1.7937665 1.9191180 1.577288619 0.8546950
#> [10,] 1.2798317 -1.0798848 1.212641960 1.1435343
#> [11,] 1.6575819 2.4445059 0.009767569 0.4094421
#> [12,] 1.0331844 0.7894211 -1.366822278 -0.3941232
#> [13,] 0.9895685 1.8263824 -0.530007326 0.3747736
#> [14,] 1.5624163 0.7254844 0.519938649 1.2070607
#> [15,] 1.4844774 1.2411993 1.255845161 1.9141898
#> [16,] 1.3055481 1.5785884 -1.072573471 2.2720648
#> [17,] 1.3932659 2.1598189 1.206692008 1.4849038
#> [18,] 2.6023967 1.9298885 2.417626146 1.8623553
#> [19,] 0.8235486 0.9438242 3.012584580 0.9878838
#> [20,] 0.7109637 -0.3230244 0.623181569 1.4882737
#>
#> $nmodels
#> [1] 10
#>
#> $modelnames
#> [1] "Series 1" "Series 2" "Series 3" "Series 4" "Series 5" "Series 6"
#> [7] "Series 7" "Series 8" "Series 9" "Series 10"
#>
#> attr(,"class")
#> [1] "foreccomb"
## Example with forecast models being stored in rows:
preds_row <- matrix(rnorm(1000, 1), 10, 100)
train_p_row <- preds_row[,1:80]
foreccomb(train_o, train_p_row, byrow = TRUE)
#> $Actual_Train
#> Time Series:
#> Start = 1
#> End = 80
#> Frequency = 1
#> [1] 0.43400756 -0.60936755 1.73788479 0.17019650 -0.60997495 -0.88493843
#> [7] -3.04292016 -0.80547635 1.48667223 -0.81349723 -0.98581235 0.32692250
#> [13] -1.14354994 1.11520398 0.16205873 -1.45973711 0.88362320 -0.95163208
#> [19] 0.48773017 0.61218570 -0.66860373 -0.31831967 -1.16119564 0.60003441
#> [25] -1.49167669 -1.05530366 0.11894684 -0.25818750 -0.84677252 2.07398325
#> [31] -0.60831152 0.78335902 0.45210259 -1.05652325 -0.30095115 0.20361402
#> [37] -1.36169564 0.11097343 -1.11684970 1.66399814 0.06007734 1.35932805
#> [43] 1.13993162 1.04056666 1.44447337 -1.09509360 -0.20536797 -0.22885541
#> [49] -1.06064057 -1.42084892 1.61972024 0.05055291 -0.73095552 -0.02253699
#> [55] 1.22242238 -1.30657291 0.64185024 -0.20405723 0.45268331 -0.81430453
#> [61] -1.11999100 0.61961511 -0.18541009 0.25505837 -0.11288202 0.10624340
#> [67] 1.27289077 -0.65136265 0.05857765 0.54267087 1.28711792 -1.22413234
#> [73] -0.26025788 1.88077852 0.97105882 0.11126840 -1.57443516 1.30479528
#> [79] 0.77987831 -0.50060114
#>
#> $Forecasts_Train
#> Time Series:
#> Start = 1
#> End = 80
#> Frequency = 1
#> Series 1 Series 2 Series 3 Series 4 Series 5 Series 6
#> 1 -0.837702785 3.000330781 0.89313766 0.35090998 0.7320358 1.38302018
#> 2 0.914264296 1.809564202 1.29733488 1.28402463 1.2359110 0.43001338
#> 3 -0.040251790 0.760957174 1.16860989 -0.46392427 2.1892685 -0.12381773
#> 4 0.063430020 2.258974542 1.74098349 -0.22235621 2.0854444 0.64700229
#> 5 0.840811055 0.842509224 1.75112571 1.33479941 1.8734980 0.38111910
#> 6 0.214439262 0.469846023 -0.11472579 0.40691389 0.4409599 3.49166996
#> 7 0.898865192 1.000104702 1.18819518 0.89022437 1.4390396 2.82967292
#> 8 2.380110745 -0.377320108 1.57446702 1.98128990 -0.5659628 0.28052929
#> 9 1.569564267 1.235262926 -1.39363244 2.66343426 1.9953003 0.10536378
#> 10 0.427942089 0.653793011 0.72373132 -0.10895857 1.0787874 0.53548772
#> 11 1.799639758 -0.542072849 0.91431495 -0.39851668 2.0923720 2.51479450
#> 12 1.889168353 -0.442915327 1.51447120 1.86435427 -0.1808132 0.07510796
#> 13 1.538902931 1.200429107 1.29645993 2.30923400 1.5773714 2.53018510
#> 14 2.451850880 0.387116392 1.24324282 0.54058303 1.7748231 1.30952115
#> 15 0.563970757 0.673351307 1.56943431 1.98468992 0.6064750 -0.58003913
#> 16 1.275490974 1.199735646 0.08580380 0.73314098 1.4955175 1.49582555
#> 17 2.146119543 0.703103271 1.93805977 3.31165656 -0.7138963 0.32908818
#> 18 0.508808542 0.482292506 2.40984170 1.61703833 0.8023575 1.67937275
#> 19 0.804446974 1.783480183 1.85047014 1.68276818 0.9251551 3.12265668
#> 20 1.049691777 0.226847378 1.54731265 1.67913356 2.8250013 -0.55442714
#> 21 2.340616092 2.126324275 3.41943519 1.98298597 1.1828726 1.76312554
#> 22 1.735648407 1.194024198 0.80763679 2.85712064 -0.1297916 3.12051824
#> 23 2.298093814 0.636986427 2.76564862 0.80901225 2.5462321 1.79929111
#> 24 2.536694937 2.801564052 0.17532488 0.41922051 0.6311241 -0.12841904
#> 25 0.777960605 -0.291065541 1.94958189 0.79287325 0.3864623 1.29981869
#> 26 -1.092997956 1.199002753 1.39014858 0.82193394 2.0145364 0.51351204
#> 27 0.522634680 0.737365409 -0.27167065 0.30380718 0.9986532 1.53255592
#> 28 3.006719102 2.413031903 -2.47084556 0.33619914 0.6080248 -0.22710759
#> 29 2.108654626 0.670764373 2.09144009 1.40683470 0.6586005 1.31646764
#> 30 0.473975300 -0.398391569 0.25815086 2.51523515 1.5866754 -1.51390126
#> 31 -0.125142771 1.722023450 -0.77100799 0.58553981 2.4958249 1.66954860
#> 32 1.555239994 -0.819463276 1.98592360 1.06821751 0.2868250 0.71562001
#> 33 -0.858532750 0.826207157 1.49296992 1.68433941 -0.5288841 1.60905190
#> 34 -0.005343145 2.220887992 1.63731347 0.01026635 1.1170558 0.57396403
#> 35 0.462964493 1.846334634 0.93002561 -0.31793632 0.9900276 0.66071598
#> 36 1.207092979 0.002242728 -0.81126413 2.49533791 1.1104194 -0.86223563
#> 37 0.460584517 3.450411779 3.07802117 0.59284105 -0.5680777 3.20556231
#> 38 0.751626891 -0.094280961 1.19713150 0.58130872 2.3089135 1.62009943
#> 39 0.040490925 0.767551324 0.05773978 1.53391735 0.8053528 0.71685019
#> 40 2.638193695 2.044793136 -0.20814581 -0.21139366 0.9373594 0.32294845
#> 41 2.373965013 0.091412189 0.80035625 1.41361482 1.6910769 -0.62549106
#> 42 -0.274456641 -0.741579489 0.63229171 0.93121473 1.1453926 -0.10003195
#> 43 3.175545444 1.336414879 -0.37875006 0.35543591 0.4121263 2.32202555
#> 44 0.894040334 1.675473834 1.03934044 1.19744419 3.3806959 1.39612803
#> 45 1.066500556 0.465351178 0.16807972 0.84756193 2.4918110 1.29851275
#> 46 0.476163266 0.447599681 0.93151311 -0.22817644 0.6217066 1.97993452
#> 47 1.643860304 0.852120337 0.83463899 0.77565835 0.9694884 -0.94790639
#> 48 0.579474916 1.890285093 1.37376205 2.58270033 0.3411956 1.54699461
#> 49 1.386583318 0.678377357 2.42253096 0.49978315 0.6807953 0.07089804
#> 50 1.727642025 0.107426081 1.35375641 0.08036834 1.5587312 2.19597721
#> 51 1.245535788 3.223404059 0.36612045 0.01422418 1.3916369 1.15332454
#> 52 -0.615924766 1.573628082 1.05240010 0.09147813 1.8487894 1.85032434
#> 53 1.128680917 2.634732069 -0.22826311 1.19140216 1.2543070 0.27067843
#> 54 -0.954157535 2.226114159 -0.24287578 0.32029888 1.9965836 0.73089147
#> 55 0.232926635 0.425973468 2.09906259 1.81910628 0.9751429 -0.05300305
#> 56 -0.707208094 1.264277417 -0.22263442 0.52395737 1.6362050 2.87222998
#> 57 2.471144655 1.466797716 0.96069250 0.86833851 1.8316539 0.44829346
#> 58 0.915101997 -0.945410793 0.97720098 0.45363423 2.5507808 1.70674020
#> 59 0.651173179 -0.201360930 1.52249010 0.49249132 1.8893521 0.27207306
#> 60 -0.026964976 -0.704693125 2.26945446 0.99587356 1.3668259 1.04966397
#> 61 0.277616722 1.511276568 0.63241013 0.13835242 1.1109137 -1.18088236
#> 62 2.079571185 2.178854593 0.67494303 0.96625516 0.1514712 2.41745089
#> 63 1.072970638 1.810384696 1.14230315 2.83077867 1.8920438 0.85661135
#> 64 0.574972691 0.199795939 -0.39958903 1.69202149 1.8743006 -0.86271657
#> 65 1.315410596 0.827197883 1.44505331 1.25168735 1.1535468 0.96836676
#> 66 0.083607269 0.380007226 1.10481064 1.75622355 2.0439797 0.96293788
#> 67 -0.158893720 -0.738756803 1.17526141 0.97881123 1.2199783 0.33661535
#> 68 0.551513213 0.924588194 2.96957688 1.50140257 1.5067497 1.21925532
#> 69 3.760429317 3.629976723 2.96591913 1.48201078 2.4390532 -0.85432448
#> 70 0.486271484 0.487152135 0.81185858 0.44468480 0.5068125 1.25122117
#> 71 2.374443805 1.729525746 0.95514083 0.41138123 0.7160380 3.08047961
#> 72 1.303887534 1.612853439 1.32735071 0.64075957 -0.7674189 1.19839414
#> 73 1.587524267 1.406428803 1.07632661 0.66736583 2.1112760 1.58714236
#> 74 -0.319155881 1.103609581 1.28542167 0.54042390 1.3664568 0.40224750
#> 75 0.757379950 1.971660232 1.80501705 0.55947555 1.0142412 2.67400581
#> 76 -1.176926252 1.575060051 0.72885808 1.40554179 -0.2936466 0.01661553
#> 77 1.142417311 0.955754169 1.43110182 0.39622514 0.2888570 0.69756749
#> 78 1.917986110 0.376709249 -0.49892270 1.37027709 1.1809620 1.34224772
#> 79 -1.157738372 1.811427933 2.47995957 0.65186566 1.1665793 0.27090766
#> 80 -0.579460643 2.130925132 0.57667097 -0.15265434 0.8912617 0.70963916
#> Series 7 Series 8 Series 9 Series 10
#> 1 2.387140740 1.327628241 0.40859550 0.885783299
#> 2 0.559324410 2.362174086 2.22747119 -0.085314982
#> 3 0.093983523 -0.203428016 0.81529442 1.115688875
#> 4 -0.995209655 0.832362494 1.74176069 0.567788783
#> 5 1.116719351 0.843067344 2.74551080 0.871986888
#> 6 0.465117825 2.197205641 -0.65818614 1.812546155
#> 7 1.312064298 -0.586642076 3.22783161 -0.769271366
#> 8 1.366104865 0.212209795 1.96023321 -0.671685121
#> 9 2.555444400 0.438414855 3.07219712 -0.822873634
#> 10 0.637368937 0.781549790 1.82870440 0.867008192
#> 11 0.858409855 1.739454549 2.78528580 2.615528798
#> 12 2.356249359 1.105393749 0.51202424 0.367675147
#> 13 0.872064810 1.209757441 1.77000996 0.487779499
#> 14 -0.229089560 -1.300460065 -0.25124957 1.628015018
#> 15 0.091093638 -0.717194977 0.87877241 0.513556711
#> 16 2.277807896 0.010819364 1.17682360 0.083557350
#> 17 -0.637235616 0.215593346 1.07461213 1.607766543
#> 18 1.176533997 0.195405031 0.63873637 1.214344016
#> 19 2.314516217 0.432078841 0.44401318 -1.016917751
#> 20 -0.343634006 1.346816154 -0.46446019 0.008146764
#> 21 1.442877591 2.229839858 -0.25839089 2.893237195
#> 22 2.924161279 -0.015371991 1.57224441 1.131868579
#> 23 0.935047583 0.705459942 -0.72833124 -0.621022061
#> 24 3.261343653 1.565525000 0.06604507 0.728799968
#> 25 1.007812963 -1.522965190 0.61278611 2.483481507
#> 26 -0.670159899 0.506674891 2.06504175 3.081212762
#> 27 0.105853694 -1.372186110 0.46369096 1.769943105
#> 28 1.989797591 1.869319300 0.15459201 1.662956724
#> 29 1.229693885 1.538522928 1.50750041 3.167402517
#> 30 1.980969836 2.089173599 1.36651163 1.564420081
#> 31 0.870482521 0.410463018 0.67699569 0.515963704
#> 32 -0.747471970 0.342161998 2.19717870 1.824200961
#> 33 1.286931647 -0.002438681 1.46523842 1.490526439
#> 34 0.239713000 0.295749067 0.65406801 2.117873567
#> 35 0.960138418 0.336470934 1.91850042 0.859691252
#> 36 0.346783321 0.304645669 2.13427059 -0.645552826
#> 37 2.743279070 2.442279354 0.42073554 1.938955140
#> 38 0.638365728 0.907642879 1.66860111 1.336199823
#> 39 -0.001334567 2.689473380 -0.22046183 0.178834990
#> 40 1.163866922 0.741599997 1.03978988 0.635158239
#> 41 -0.979945973 1.868445849 -0.01689456 1.811189373
#> 42 2.214785257 0.853684104 1.28595931 -0.894925329
#> 43 -2.095255644 1.142171816 -1.35332261 1.653791698
#> 44 -0.269058807 0.328132121 1.19396654 0.611973847
#> 45 1.063559267 1.406568360 0.71775441 2.533975077
#> 46 0.971309045 1.438797788 2.58196926 0.695510591
#> 47 0.167550244 0.851608336 0.24752769 2.122189863
#> 48 0.966025459 0.180520922 -0.75220812 -0.048107173
#> 49 1.002487332 1.177080079 0.79348990 -1.299903795
#> 50 0.452871850 1.391178268 2.21122673 0.551149196
#> 51 1.142145293 1.733478651 2.62216023 0.250323077
#> 52 0.829425578 0.303004914 2.65605629 0.853482825
#> 53 1.284944958 1.995456779 0.46969673 0.859782538
#> 54 0.368344784 2.244872428 1.92466843 0.202783497
#> 55 0.804496080 0.145464886 -0.59631701 -0.514402502
#> 56 1.270456983 1.237759084 3.35746610 -0.468583608
#> 57 0.596336028 0.781245253 1.87633844 1.930101124
#> 58 1.017322350 2.715480692 -0.18643404 2.537826526
#> 59 1.781268776 1.750613099 -0.03004550 0.252111629
#> 60 0.536133903 0.450700358 0.02157306 1.895538654
#> 61 0.650297520 1.922812437 3.07737970 2.092350115
#> 62 1.177280111 1.643863045 0.67020781 1.462062875
#> 63 2.075999082 0.571505511 1.99445586 1.750201339
#> 64 1.577993390 2.354862665 2.68197496 1.008351697
#> 65 1.657476712 -0.725473120 0.15576902 0.767113182
#> 66 0.998991931 0.387183219 1.77600155 0.697368267
#> 67 0.662212335 2.943560049 2.21323096 -0.083961539
#> 68 0.859352274 0.819906280 0.26456502 3.056613843
#> 69 0.196632890 -0.565495133 0.21929804 1.221388756
#> 70 1.131166702 0.449516928 1.33589593 0.903065791
#> 71 2.642507047 0.795293707 2.80217562 0.912319461
#> 72 2.211839172 0.438301610 0.20332609 -0.605954849
#> 73 -0.320553340 0.887250834 1.05026921 -0.328780822
#> 74 1.071967179 0.069647204 0.86228230 1.563454040
#> 75 -0.384706513 2.337177910 0.41453840 2.759850299
#> 76 1.862345799 1.384911572 0.65961871 0.849505254
#> 77 1.634267045 0.849242618 1.40107176 -0.376583516
#> 78 1.578600841 -1.285900030 1.64805784 0.130296654
#> 79 2.344947382 2.164345014 1.73134247 1.458003727
#> 80 0.555618970 -0.551155833 0.18086260 0.494641882
#>
#> $nmodels
#> [1] 10
#>
#> $modelnames
#> [1] "Series 1" "Series 2" "Series 3" "Series 4" "Series 5" "Series 6"
#> [7] "Series 7" "Series 8" "Series 9" "Series 10"
#>
#> attr(,"class")
#> [1] "foreccomb"
## Example with NA imputation:
train_p_na <- train_p
train_p_na[2,3] <- NA
foreccomb(train_o, train_p_na, na.impute = TRUE)
#> A subset of the individual forecasts included NA values and has been imputed.
#> $Actual_Train
#> Time Series:
#> Start = 1
#> End = 80
#> Frequency = 1
#> [1] 0.43400756 -0.60936755 1.73788479 0.17019650 -0.60997495 -0.88493843
#> [7] -3.04292016 -0.80547635 1.48667223 -0.81349723 -0.98581235 0.32692250
#> [13] -1.14354994 1.11520398 0.16205873 -1.45973711 0.88362320 -0.95163208
#> [19] 0.48773017 0.61218570 -0.66860373 -0.31831967 -1.16119564 0.60003441
#> [25] -1.49167669 -1.05530366 0.11894684 -0.25818750 -0.84677252 2.07398325
#> [31] -0.60831152 0.78335902 0.45210259 -1.05652325 -0.30095115 0.20361402
#> [37] -1.36169564 0.11097343 -1.11684970 1.66399814 0.06007734 1.35932805
#> [43] 1.13993162 1.04056666 1.44447337 -1.09509360 -0.20536797 -0.22885541
#> [49] -1.06064057 -1.42084892 1.61972024 0.05055291 -0.73095552 -0.02253699
#> [55] 1.22242238 -1.30657291 0.64185024 -0.20405723 0.45268331 -0.81430453
#> [61] -1.11999100 0.61961511 -0.18541009 0.25505837 -0.11288202 0.10624340
#> [67] 1.27289077 -0.65136265 0.05857765 0.54267087 1.28711792 -1.22413234
#> [73] -0.26025788 1.88077852 0.97105882 0.11126840 -1.57443516 1.30479528
#> [79] 0.77987831 -0.50060114
#>
#> $Forecasts_Train
#> Series 1 Series 2 Series 3 Series 4 Series 5 Series 6
#> 1 0.49035870 0.900280120 3.149106584 0.46437044 1.71035305 0.33958138
#> 2 1.29856014 -0.241495179 1.848869133 0.85851602 1.67950686 2.57436136
#> 3 0.28742452 0.002112943 2.049470658 0.63612821 2.27472718 0.82215308
#> 4 0.26586712 0.252073962 1.027658636 2.51242817 -0.55670766 1.28138024
#> 5 1.06403760 2.166644019 1.526688482 -0.98958234 -0.75659683 -0.28676256
#> 6 0.72273245 1.019240683 -0.005815529 0.91806524 -0.73411887 0.99314071
#> 7 0.40760472 1.401171394 3.197404454 2.31845039 -0.91714470 2.60080835
#> 8 1.69111890 1.069845467 0.702314124 1.32960310 0.14908582 0.60056549
#> 9 0.53254793 -1.205506173 -0.163425224 1.07887669 0.43436698 2.21667485
#> 10 1.55818258 1.464048908 -0.560937779 0.96632378 0.59304219 0.11642798
#> 11 0.34223086 0.895949751 1.097984141 0.57108564 2.36118225 -0.17334560
#> 12 1.90763130 0.627971660 2.329258487 0.23239814 1.48491225 1.06812522
#> 13 1.55607918 1.379200372 -0.110599691 0.84442977 3.08698121 1.17980929
#> 14 -0.80581475 -1.004890326 2.010167512 2.00865252 1.46893454 1.05667256
#> 15 0.87430724 2.115190217 2.068816561 0.33768070 2.18911369 0.79610998
#> 16 2.14699845 2.613408288 -0.187365519 2.58519311 1.71322852 0.48814835
#> 17 2.62758961 1.568510929 1.708963397 0.60726478 2.85862373 1.63591495
#> 18 1.02754292 1.534428918 0.702916655 1.84197242 2.28961667 0.59101182
#> 19 -0.80362627 2.074658756 1.503916904 0.26679451 1.08495291 0.12775184
#> 20 3.19379384 0.086029912 1.429044295 2.91702809 0.88090793 0.09030641
#> 21 1.15147619 -0.196600889 1.038899464 2.08631377 2.84641728 0.02171143
#> 22 0.11329226 -0.051354817 -0.270471957 0.75203685 1.72469559 1.06147517
#> 23 -0.52730675 -0.644431851 1.336518748 2.68951417 0.50385051 2.02049362
#> 24 1.06343685 1.340013101 0.816299130 0.31409716 -0.09552238 0.89251584
#> 25 2.44035374 1.826320050 0.250284052 0.31616172 2.33152044 0.56948658
#> 26 0.61124939 0.147818461 1.100501383 0.07936381 2.11960963 -0.16021862
#> 27 1.16547789 1.662488840 -1.054171126 2.44943900 1.36484498 1.06396381
#> 28 0.65561619 2.596515342 2.804254467 1.76861728 -0.76243445 0.28346271
#> 29 1.59548588 0.648740322 3.043544311 2.34751346 1.30873823 2.93396120
#> 30 -0.14925506 0.367000085 1.221017455 -0.01794408 0.53307285 -0.09841434
#> 31 0.20209834 2.060188650 1.416987156 1.25954334 -1.26358591 0.50231918
#> 32 0.74339088 1.864128778 -0.133568286 0.32993216 1.93793288 -0.45490069
#> 33 0.07458618 -0.300486024 -0.357276791 -0.03109610 1.21784137 -1.32189721
#> 34 1.16581417 1.215292355 0.303869420 -0.17852637 0.53966693 0.54581364
#> 35 1.86729664 -0.010173163 0.916255662 -0.03674990 0.27750348 0.71456714
#> 36 1.17487414 2.798167464 -0.603860166 1.08169121 -0.34135847 1.72351212
#> 37 1.86361750 0.551169595 0.356379728 1.39451909 1.41614559 -0.27472929
#> 38 1.58464519 1.532836334 1.766030845 -0.09285101 2.04205620 1.40001639
#> 39 0.66919058 1.300832981 -0.568302346 1.05622671 0.79503770 1.49554501
#> 40 1.30578017 0.541273824 1.289982800 1.41616058 1.18654062 1.27708127
#> 41 0.96753762 -0.241957197 1.203216841 -0.50472343 -0.03517353 1.73085437
#> 42 3.84688023 3.978722899 0.282846256 -0.52705481 0.43860180 1.30048110
#> 43 1.49219553 0.551026149 0.502466673 1.70898499 2.21217630 -0.42535649
#> 44 1.43157315 0.822865021 1.408204053 0.27839911 1.44747061 -0.26097392
#> 45 1.30864534 2.136997979 1.382958103 2.66112171 -0.75693836 -0.10904965
#> 46 1.07332106 1.658319788 0.001486564 1.17064527 0.83317998 1.28915016
#> 47 1.83151376 1.097060723 1.910345038 0.42665777 0.05433657 0.40084826
#> 48 1.76206608 2.692937337 2.930613267 1.34124462 0.03187431 0.11171237
#> 49 0.86774028 -0.526270161 0.960831119 -0.03512074 1.29994442 0.62686894
#> 50 1.33256468 1.538898972 1.198609355 0.45814060 1.12740128 1.06682605
#> 51 -0.47332243 -0.134711092 0.658499779 2.10389238 0.28127889 2.20363134
#> 52 0.89825061 1.692757571 0.160376162 0.72750150 -0.53798220 0.85462936
#> 53 -0.71793245 0.209596475 2.715632975 2.07031297 2.22030106 1.84828597
#> 54 0.24569425 1.039674956 0.852893054 0.19913196 1.13654499 1.30626366
#> 55 0.40246995 1.554239163 0.794617003 0.70033910 0.27802854 0.55639267
#> 56 1.45619783 1.268076364 1.257291618 -0.41035644 -0.18956674 2.40499675
#> 57 -0.12867484 3.076600798 0.718096693 0.58409047 0.43987850 2.56109440
#> 58 2.39187213 0.953676226 0.437945903 2.13261053 0.96516226 0.89035456
#> 59 0.01381174 1.126990621 2.438027039 0.02707141 0.02924701 -0.28576661
#> 60 1.24736147 0.078583502 0.168934646 2.31967808 0.31784723 0.82667061
#> 61 0.52179143 -0.723432837 0.722708657 2.12845772 -0.65727594 1.07993430
#> 62 0.47616934 2.304859390 0.305688670 2.44005492 2.35437176 2.19821615
#> 63 1.06647309 0.999234408 2.425531551 0.37943573 -0.34087915 2.41264420
#> 64 2.99995832 1.165681695 0.517560044 0.76812127 0.14978533 1.13943035
#> 65 0.60378299 0.941669426 1.114673583 1.60123284 -0.46883665 2.18068910
#> 66 -0.61924429 1.384093132 2.105294105 0.44256679 1.11567925 1.70342419
#> 67 0.45119769 0.928279542 0.624233078 -0.33337714 1.14419836 1.67898783
#> 68 1.60586942 1.316623500 1.862004837 2.20678683 1.02960004 2.10339785
#> 69 2.03823465 0.654320732 1.277032722 2.29525044 2.53412814 1.51712787
#> 70 -0.20250667 0.213155497 1.337860721 0.43486175 1.61599417 1.39528062
#> 71 0.82448322 0.180353110 -1.430270245 -0.30064557 0.56909209 1.12032389
#> 72 1.70980177 1.371194700 2.406439541 -0.17450618 1.80849261 -0.31276376
#> 73 0.46912511 0.207248041 0.112389484 0.33087409 2.31663838 1.21793320
#> 74 0.86465865 0.654477007 1.441556058 1.02219381 2.45161737 1.13355408
#> 75 0.91113580 0.882585915 0.450350377 0.01045436 2.22567289 1.21228962
#> 76 0.87926484 0.283824915 0.168281256 2.06337540 1.27932859 -1.51274244
#> 77 2.42907726 -0.003295331 0.245012886 1.62183910 0.66378049 2.05924828
#> 78 0.69938455 3.364062893 1.201520525 1.56605575 0.01440620 0.86853876
#> 79 1.34113381 1.903969928 0.363036108 1.90006928 0.45562589 2.54274721
#> 80 2.81163825 2.658749238 0.323114031 0.77066651 1.63613206 1.21669940
#> Series 7 Series 8 Series 9 Series 10
#> 1 0.85505494 3.91371591 0.98942111 0.19428752
#> 2 0.72848170 -0.60962376 1.88108433 1.63362545
#> 3 2.25262607 0.01751107 -1.67749574 2.21481436
#> 4 -0.78006982 0.48933195 1.79620347 0.29995128
#> 5 2.92579293 0.38117873 0.48538920 1.09179893
#> 6 1.61582847 -0.13977187 -2.03856976 0.22567676
#> 7 1.58505899 0.46368934 1.77696369 1.90747895
#> 8 -0.36244767 1.86970373 -0.57831478 -1.04241291
#> 9 -0.16788843 2.27819188 1.68408009 1.69154955
#> 10 1.78825532 0.17670473 0.96750101 -0.06905579
#> 11 0.79638630 1.82355658 2.16444998 -0.46970765
#> 12 1.17175879 0.68717926 1.18557708 2.66229690
#> 13 0.97827039 1.21522900 -0.11277775 0.82153004
#> 14 1.56374507 0.65963727 1.80440348 1.28718226
#> 15 0.76321697 -0.38048976 1.20848684 0.91861461
#> 16 1.05391798 2.50321203 1.35235972 1.57563848
#> 17 0.31255651 1.76727933 0.46222042 2.39190256
#> 18 0.17681827 1.09670182 0.54365509 0.73019364
#> 19 0.44079819 -0.54899892 -1.00079923 1.54502709
#> 20 0.91030261 1.99025535 2.29071377 0.22455937
#> 21 -0.31239889 0.11716066 1.75785227 2.04599941
#> 22 1.18857317 2.11598653 1.10785113 2.35656135
#> 23 0.09522516 -1.09890000 1.59356777 -0.61276485
#> 24 -0.34638129 2.05279721 1.11149809 1.90211785
#> 25 0.68182384 1.33247519 0.28028114 1.73332404
#> 26 0.45319854 -0.11823245 1.70003447 2.54327731
#> 27 1.16360222 2.93411500 2.35354562 0.58515503
#> 28 0.01356092 0.23022349 2.13331046 1.26926129
#> 29 1.66865272 2.02038894 2.11074333 1.58435749
#> 30 0.17115411 0.78157083 0.89827863 0.68346651
#> 31 1.66570148 0.87255867 0.52996908 0.21212636
#> 32 -0.89634956 0.76042865 -1.07028857 0.61946298
#> 33 2.25551925 -0.07730710 2.05413101 0.93412275
#> 34 0.55883657 -0.78824814 1.22819036 -0.09929003
#> 35 2.80619254 -0.18593829 -0.70573457 -0.56296418
#> 36 0.40800620 1.09284674 -0.15669929 -0.16340657
#> 37 1.88950391 0.02285816 1.25275921 1.95261152
#> 38 1.18467150 1.07814076 1.46123347 1.89518638
#> 39 3.40058614 1.64947199 1.23982474 1.37366894
#> 40 -0.60291203 2.96577802 1.27435099 0.36342315
#> 41 1.79416950 -0.08485201 1.55414240 0.74210636
#> 42 0.48778065 0.25138833 2.11973175 0.63214593
#> 43 -0.07866404 -1.60315888 1.58706314 3.53679844
#> 44 1.07005877 0.66287890 3.43790459 1.91911025
#> 45 0.92795131 0.53912555 0.01947789 0.84162627
#> 46 1.02028741 3.38797802 0.76937009 1.12088276
#> 47 0.88452044 1.52196707 1.00042240 -0.45226374
#> 48 -0.20934950 1.03698765 0.33467700 1.29205312
#> 49 -0.10762520 -0.63649277 0.88391871 0.09264714
#> 50 1.77776598 0.50837405 0.80914416 0.37013699
#> 51 1.29708561 1.89786074 1.37809278 0.83128843
#> 52 -1.23586938 1.70222734 0.21292087 0.35790268
#> 53 0.73057350 -1.34641829 0.34107469 0.25264315
#> 54 1.80402475 0.90354444 2.22629344 0.10179832
#> 55 -0.09518811 1.28584865 1.98574531 2.95447612
#> 56 0.02116943 2.27015607 2.90747707 -2.51178876
#> 57 0.75269527 -0.79585602 0.47469585 2.60194143
#> 58 1.00735801 0.47228407 1.57201134 0.43827222
#> 59 0.54823456 1.59725987 1.45826381 2.05537311
#> 60 -0.03348150 3.75767673 1.29687349 0.87961405
#> 61 2.55854567 2.52794529 0.04065551 0.33866323
#> 62 1.54165973 2.95546755 1.29645417 -0.33659460
#> 63 0.17645766 0.33503500 1.05424069 1.35096380
#> 64 2.07253001 -1.44750391 -0.71805934 0.73086714
#> 65 -0.46561815 -0.21332951 2.95746011 -0.15953117
#> 66 0.75260718 1.39157383 -0.32167992 1.59336963
#> 67 1.15098622 1.21169905 -0.55743786 -0.19719721
#> 68 2.43533756 -0.19817043 2.46791159 0.81850573
#> 69 2.86002736 0.47833999 0.96273726 -0.01392764
#> 70 0.78241759 0.90047440 1.10788248 1.43907960
#> 71 0.15803445 1.16385385 1.77717612 2.55008375
#> 72 1.27653493 -0.78445452 0.07902372 -0.05446601
#> 73 0.19517838 0.47564812 2.38264151 -0.29034513
#> 74 0.32338238 -0.31142110 2.29459293 0.82536649
#> 75 1.94666605 0.83778725 1.86281467 0.49043168
#> 76 1.38864955 -0.46483909 2.22605321 0.40146523
#> 77 1.70864246 0.14608079 1.36502343 0.02282874
#> 78 1.69960394 1.60676966 0.73658556 1.92849899
#> 79 1.52521772 1.40285543 1.62074063 3.22382898
#> 80 0.67784463 1.25943923 1.23617040 0.16295846
#>
#> $nmodels
#> [1] 10
#>
#> $modelnames
#> [1] "Series 1" "Series 2" "Series 3" "Series 4" "Series 5" "Series 6"
#> [7] "Series 7" "Series 8" "Series 9" "Series 10"
#>
#> attr(,"class")
#> [1] "foreccomb"
## Example with perfect collinearity:
train_p[,2] <- 0.8*train_p[,1] + 0.4*train_p[,8]
foreccomb(train_o, train_p, criterion="RMSE")
#> Training set prediction matrix is not full rank. Algorithm to remove linearly dependent models started.
#> The input matrix is not full rank. The indices of the linearly dependent models are: 1, 2, 8
#> Of these models, model 2 had the highest RMSE and was removed.
#> Checking if the revised matrix is full rank.
#> The revised matrix is now full rank.
#> $Actual_Train
#> Time Series:
#> Start = 1
#> End = 80
#> Frequency = 1
#> [1] 0.43400756 -0.60936755 1.73788479 0.17019650 -0.60997495 -0.88493843
#> [7] -3.04292016 -0.80547635 1.48667223 -0.81349723 -0.98581235 0.32692250
#> [13] -1.14354994 1.11520398 0.16205873 -1.45973711 0.88362320 -0.95163208
#> [19] 0.48773017 0.61218570 -0.66860373 -0.31831967 -1.16119564 0.60003441
#> [25] -1.49167669 -1.05530366 0.11894684 -0.25818750 -0.84677252 2.07398325
#> [31] -0.60831152 0.78335902 0.45210259 -1.05652325 -0.30095115 0.20361402
#> [37] -1.36169564 0.11097343 -1.11684970 1.66399814 0.06007734 1.35932805
#> [43] 1.13993162 1.04056666 1.44447337 -1.09509360 -0.20536797 -0.22885541
#> [49] -1.06064057 -1.42084892 1.61972024 0.05055291 -0.73095552 -0.02253699
#> [55] 1.22242238 -1.30657291 0.64185024 -0.20405723 0.45268331 -0.81430453
#> [61] -1.11999100 0.61961511 -0.18541009 0.25505837 -0.11288202 0.10624340
#> [67] 1.27289077 -0.65136265 0.05857765 0.54267087 1.28711792 -1.22413234
#> [73] -0.26025788 1.88077852 0.97105882 0.11126840 -1.57443516 1.30479528
#> [79] 0.77987831 -0.50060114
#>
#> $Forecasts_Train
#> Time Series:
#> Start = 1
#> End = 80
#> Frequency = 1
#> Series 1 Series 3 Series 4 Series 5 Series 6 Series 7
#> 1 0.49035870 3.149106584 0.46437044 1.71035305 0.33958138 0.85505494
#> 2 1.29856014 1.767830806 0.85851602 1.67950686 2.57436136 0.72848170
#> 3 0.28742452 2.049470658 0.63612821 2.27472718 0.82215308 2.25262607
#> 4 0.26586712 1.027658636 2.51242817 -0.55670766 1.28138024 -0.78006982
#> 5 1.06403760 1.526688482 -0.98958234 -0.75659683 -0.28676256 2.92579293
#> 6 0.72273245 -0.005815529 0.91806524 -0.73411887 0.99314071 1.61582847
#> 7 0.40760472 3.197404454 2.31845039 -0.91714470 2.60080835 1.58505899
#> 8 1.69111890 0.702314124 1.32960310 0.14908582 0.60056549 -0.36244767
#> 9 0.53254793 -0.163425224 1.07887669 0.43436698 2.21667485 -0.16788843
#> 10 1.55818258 -0.560937779 0.96632378 0.59304219 0.11642798 1.78825532
#> 11 0.34223086 1.097984141 0.57108564 2.36118225 -0.17334560 0.79638630
#> 12 1.90763130 2.329258487 0.23239814 1.48491225 1.06812522 1.17175879
#> 13 1.55607918 -0.110599691 0.84442977 3.08698121 1.17980929 0.97827039
#> 14 -0.80581475 2.010167512 2.00865252 1.46893454 1.05667256 1.56374507
#> 15 0.87430724 2.068816561 0.33768070 2.18911369 0.79610998 0.76321697
#> 16 2.14699845 -0.187365519 2.58519311 1.71322852 0.48814835 1.05391798
#> 17 2.62758961 1.708963397 0.60726478 2.85862373 1.63591495 0.31255651
#> 18 1.02754292 0.702916655 1.84197242 2.28961667 0.59101182 0.17681827
#> 19 -0.80362627 1.503916904 0.26679451 1.08495291 0.12775184 0.44079819
#> 20 3.19379384 1.429044295 2.91702809 0.88090793 0.09030641 0.91030261
#> 21 1.15147619 1.038899464 2.08631377 2.84641728 0.02171143 -0.31239889
#> 22 0.11329226 -0.270471957 0.75203685 1.72469559 1.06147517 1.18857317
#> 23 -0.52730675 1.336518748 2.68951417 0.50385051 2.02049362 0.09522516
#> 24 1.06343685 0.816299130 0.31409716 -0.09552238 0.89251584 -0.34638129
#> 25 2.44035374 0.250284052 0.31616172 2.33152044 0.56948658 0.68182384
#> 26 0.61124939 1.100501383 0.07936381 2.11960963 -0.16021862 0.45319854
#> 27 1.16547789 -1.054171126 2.44943900 1.36484498 1.06396381 1.16360222
#> 28 0.65561619 2.804254467 1.76861728 -0.76243445 0.28346271 0.01356092
#> 29 1.59548588 3.043544311 2.34751346 1.30873823 2.93396120 1.66865272
#> 30 -0.14925506 1.221017455 -0.01794408 0.53307285 -0.09841434 0.17115411
#> 31 0.20209834 1.416987156 1.25954334 -1.26358591 0.50231918 1.66570148
#> 32 0.74339088 -0.133568286 0.32993216 1.93793288 -0.45490069 -0.89634956
#> 33 0.07458618 -0.357276791 -0.03109610 1.21784137 -1.32189721 2.25551925
#> 34 1.16581417 0.303869420 -0.17852637 0.53966693 0.54581364 0.55883657
#> 35 1.86729664 0.916255662 -0.03674990 0.27750348 0.71456714 2.80619254
#> 36 1.17487414 -0.603860166 1.08169121 -0.34135847 1.72351212 0.40800620
#> 37 1.86361750 0.356379728 1.39451909 1.41614559 -0.27472929 1.88950391
#> 38 1.58464519 1.766030845 -0.09285101 2.04205620 1.40001639 1.18467150
#> 39 0.66919058 -0.568302346 1.05622671 0.79503770 1.49554501 3.40058614
#> 40 1.30578017 1.289982800 1.41616058 1.18654062 1.27708127 -0.60291203
#> 41 0.96753762 1.203216841 -0.50472343 -0.03517353 1.73085437 1.79416950
#> 42 3.84688023 0.282846256 -0.52705481 0.43860180 1.30048110 0.48778065
#> 43 1.49219553 0.502466673 1.70898499 2.21217630 -0.42535649 -0.07866404
#> 44 1.43157315 1.408204053 0.27839911 1.44747061 -0.26097392 1.07005877
#> 45 1.30864534 1.382958103 2.66112171 -0.75693836 -0.10904965 0.92795131
#> 46 1.07332106 0.001486564 1.17064527 0.83317998 1.28915016 1.02028741
#> 47 1.83151376 1.910345038 0.42665777 0.05433657 0.40084826 0.88452044
#> 48 1.76206608 2.930613267 1.34124462 0.03187431 0.11171237 -0.20934950
#> 49 0.86774028 0.960831119 -0.03512074 1.29994442 0.62686894 -0.10762520
#> 50 1.33256468 1.198609355 0.45814060 1.12740128 1.06682605 1.77776598
#> 51 -0.47332243 0.658499779 2.10389238 0.28127889 2.20363134 1.29708561
#> 52 0.89825061 0.160376162 0.72750150 -0.53798220 0.85462936 -1.23586938
#> 53 -0.71793245 2.715632975 2.07031297 2.22030106 1.84828597 0.73057350
#> 54 0.24569425 0.852893054 0.19913196 1.13654499 1.30626366 1.80402475
#> 55 0.40246995 0.794617003 0.70033910 0.27802854 0.55639267 -0.09518811
#> 56 1.45619783 1.257291618 -0.41035644 -0.18956674 2.40499675 0.02116943
#> 57 -0.12867484 0.718096693 0.58409047 0.43987850 2.56109440 0.75269527
#> 58 2.39187213 0.437945903 2.13261053 0.96516226 0.89035456 1.00735801
#> 59 0.01381174 2.438027039 0.02707141 0.02924701 -0.28576661 0.54823456
#> 60 1.24736147 0.168934646 2.31967808 0.31784723 0.82667061 -0.03348150
#> 61 0.52179143 0.722708657 2.12845772 -0.65727594 1.07993430 2.55854567
#> 62 0.47616934 0.305688670 2.44005492 2.35437176 2.19821615 1.54165973
#> 63 1.06647309 2.425531551 0.37943573 -0.34087915 2.41264420 0.17645766
#> 64 2.99995832 0.517560044 0.76812127 0.14978533 1.13943035 2.07253001
#> 65 0.60378299 1.114673583 1.60123284 -0.46883665 2.18068910 -0.46561815
#> 66 -0.61924429 2.105294105 0.44256679 1.11567925 1.70342419 0.75260718
#> 67 0.45119769 0.624233078 -0.33337714 1.14419836 1.67898783 1.15098622
#> 68 1.60586942 1.862004837 2.20678683 1.02960004 2.10339785 2.43533756
#> 69 2.03823465 1.277032722 2.29525044 2.53412814 1.51712787 2.86002736
#> 70 -0.20250667 1.337860721 0.43486175 1.61599417 1.39528062 0.78241759
#> 71 0.82448322 -1.430270245 -0.30064557 0.56909209 1.12032389 0.15803445
#> 72 1.70980177 2.406439541 -0.17450618 1.80849261 -0.31276376 1.27653493
#> 73 0.46912511 0.112389484 0.33087409 2.31663838 1.21793320 0.19517838
#> 74 0.86465865 1.441556058 1.02219381 2.45161737 1.13355408 0.32338238
#> 75 0.91113580 0.450350377 0.01045436 2.22567289 1.21228962 1.94666605
#> 76 0.87926484 0.168281256 2.06337540 1.27932859 -1.51274244 1.38864955
#> 77 2.42907726 0.245012886 1.62183910 0.66378049 2.05924828 1.70864246
#> 78 0.69938455 1.201520525 1.56605575 0.01440620 0.86853876 1.69960394
#> 79 1.34113381 0.363036108 1.90006928 0.45562589 2.54274721 1.52521772
#> 80 2.81163825 0.323114031 0.77066651 1.63613206 1.21669940 0.67784463
#> Series 8 Series 9 Series 10
#> 1 3.91371591 0.98942111 0.19428752
#> 2 -0.60962376 1.88108433 1.63362545
#> 3 0.01751107 -1.67749574 2.21481436
#> 4 0.48933195 1.79620347 0.29995128
#> 5 0.38117873 0.48538920 1.09179893
#> 6 -0.13977187 -2.03856976 0.22567676
#> 7 0.46368934 1.77696369 1.90747895
#> 8 1.86970373 -0.57831478 -1.04241291
#> 9 2.27819188 1.68408009 1.69154955
#> 10 0.17670473 0.96750101 -0.06905579
#> 11 1.82355658 2.16444998 -0.46970765
#> 12 0.68717926 1.18557708 2.66229690
#> 13 1.21522900 -0.11277775 0.82153004
#> 14 0.65963727 1.80440348 1.28718226
#> 15 -0.38048976 1.20848684 0.91861461
#> 16 2.50321203 1.35235972 1.57563848
#> 17 1.76727933 0.46222042 2.39190256
#> 18 1.09670182 0.54365509 0.73019364
#> 19 -0.54899892 -1.00079923 1.54502709
#> 20 1.99025535 2.29071377 0.22455937
#> 21 0.11716066 1.75785227 2.04599941
#> 22 2.11598653 1.10785113 2.35656135
#> 23 -1.09890000 1.59356777 -0.61276485
#> 24 2.05279721 1.11149809 1.90211785
#> 25 1.33247519 0.28028114 1.73332404
#> 26 -0.11823245 1.70003447 2.54327731
#> 27 2.93411500 2.35354562 0.58515503
#> 28 0.23022349 2.13331046 1.26926129
#> 29 2.02038894 2.11074333 1.58435749
#> 30 0.78157083 0.89827863 0.68346651
#> 31 0.87255867 0.52996908 0.21212636
#> 32 0.76042865 -1.07028857 0.61946298
#> 33 -0.07730710 2.05413101 0.93412275
#> 34 -0.78824814 1.22819036 -0.09929003
#> 35 -0.18593829 -0.70573457 -0.56296418
#> 36 1.09284674 -0.15669929 -0.16340657
#> 37 0.02285816 1.25275921 1.95261152
#> 38 1.07814076 1.46123347 1.89518638
#> 39 1.64947199 1.23982474 1.37366894
#> 40 2.96577802 1.27435099 0.36342315
#> 41 -0.08485201 1.55414240 0.74210636
#> 42 0.25138833 2.11973175 0.63214593
#> 43 -1.60315888 1.58706314 3.53679844
#> 44 0.66287890 3.43790459 1.91911025
#> 45 0.53912555 0.01947789 0.84162627
#> 46 3.38797802 0.76937009 1.12088276
#> 47 1.52196707 1.00042240 -0.45226374
#> 48 1.03698765 0.33467700 1.29205312
#> 49 -0.63649277 0.88391871 0.09264714
#> 50 0.50837405 0.80914416 0.37013699
#> 51 1.89786074 1.37809278 0.83128843
#> 52 1.70222734 0.21292087 0.35790268
#> 53 -1.34641829 0.34107469 0.25264315
#> 54 0.90354444 2.22629344 0.10179832
#> 55 1.28584865 1.98574531 2.95447612
#> 56 2.27015607 2.90747707 -2.51178876
#> 57 -0.79585602 0.47469585 2.60194143
#> 58 0.47228407 1.57201134 0.43827222
#> 59 1.59725987 1.45826381 2.05537311
#> 60 3.75767673 1.29687349 0.87961405
#> 61 2.52794529 0.04065551 0.33866323
#> 62 2.95546755 1.29645417 -0.33659460
#> 63 0.33503500 1.05424069 1.35096380
#> 64 -1.44750391 -0.71805934 0.73086714
#> 65 -0.21332951 2.95746011 -0.15953117
#> 66 1.39157383 -0.32167992 1.59336963
#> 67 1.21169905 -0.55743786 -0.19719721
#> 68 -0.19817043 2.46791159 0.81850573
#> 69 0.47833999 0.96273726 -0.01392764
#> 70 0.90047440 1.10788248 1.43907960
#> 71 1.16385385 1.77717612 2.55008375
#> 72 -0.78445452 0.07902372 -0.05446601
#> 73 0.47564812 2.38264151 -0.29034513
#> 74 -0.31142110 2.29459293 0.82536649
#> 75 0.83778725 1.86281467 0.49043168
#> 76 -0.46483909 2.22605321 0.40146523
#> 77 0.14608079 1.36502343 0.02282874
#> 78 1.60676966 0.73658556 1.92849899
#> 79 1.40285543 1.62074063 3.22382898
#> 80 1.25943923 1.23617040 0.16295846
#>
#> $nmodels
#> [1] 9
#>
#> $modelnames
#> [1] "Series 1" "Series 3" "Series 4" "Series 5" "Series 6" "Series 7"
#> [7] "Series 8" "Series 9" "Series 10"
#>
#> attr(,"class")
#> [1] "foreccomb"