Structures cross-sectional input data (individual model forecasts) for forecast combination. Stores data as S3 class foreccomb that serves as input to the forecast combination techniques. Handles missing value imputation (optional) and resolves problems due to perfect collinearity.

foreccomb(
  observed_vector,
  prediction_matrix,
  newobs = NULL,
  newpreds = NULL,
  byrow = FALSE,
  na.impute = TRUE,
  criterion = "RMSE"
)

Arguments

observed_vector

A vector or univariate time series; contains ‘actual values’ for training set.

prediction_matrix

A matrix or multivariate time series; contains individual model forecasts for training set.

newobs

A vector or univariate time series; contains ‘actual values’ if a test set is used (optional).

newpreds

A matrix or multivariate time series; contains individual model forecasts if a test set is used (optional). Does not require specification of newobs -- in the case in which a forecaster only wants to train the forecast combination method with a training set and apply it to future individual model forecasts, only newpreds is required, not newobs.

byrow

logical. The default (FALSE) assumes that each column of the forecast matrices (prediction_matrix and -- if specified -- newpreds) contains forecasts from one forecast model; if each row of the matrices contains forecasts from one forecast model, set to TRUE.

na.impute

logical. The default (TRUE) behavior is to impute missing values via the cross-validated spline approach of the mtsdi package. If set to FALSE, forecasts with missing values will be removed. Missing values in the observed data are never imputed.

criterion

One of "RMSE" (default), "MAE", or "MAPE". Is only used if prediction_matrix is not full rank: The algorithm checks which models are causing perfect collinearity and the one with the worst individual accuracy (according to the chosen criterion) is removed.

Value

Returns an object of class foreccomb.

Details

The function imports the column names of the prediction matrix (if byrow = FALSE, otherwise the row names) as model names; if no column names are specified, generic model names are created.

The missing value imputation algorithm is a modified version of the EM algorithm for imputation that is applicable to time series data - accounting for correlation between the forecasting models and time structure of the series itself. A smooth spline is fitted to each of the time series at each iteration. The degrees of freedom of each spline are chosen by cross-validation.

Forecast combination relies on the lack of perfect collinearity. The test for this condition checks if prediction_matrix is full rank. In the presence of perfect collinearity, the iterative algorithm identifies the subset of forecasting models that are causing linear dependence and removes the one among them that has the lowest accuracy (according to a selected criterion, default is RMSE). This procedure is repeated until the revised prediction matrix is full rank.

References

Junger, W. L., Ponce de Leon, A., and Santos, N. (2003). Missing Data Imputation in Multivariate Time Series via EM Algorithm. Cadernos do IME, 15, 8--21.

Dempster, A., Laird, N., and Rubin D. (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, Series B, 39(1), 1--38.

See also

Author

Christoph E. Weiss, Gernot R. Roetzer

Examples

obs <- rnorm(100)
preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]
train_p<-preds[1:80,]
test_o<-obs[81:100]
test_p<-preds[81:100,]

## Example with a training set only:
foreccomb(train_o, train_p)
#> $Actual_Train
#> Time Series:
#> Start = 1 
#> End = 80 
#> Frequency = 1 
#>  [1]  0.43400756 -0.60936755  1.73788479  0.17019650 -0.60997495 -0.88493843
#>  [7] -3.04292016 -0.80547635  1.48667223 -0.81349723 -0.98581235  0.32692250
#> [13] -1.14354994  1.11520398  0.16205873 -1.45973711  0.88362320 -0.95163208
#> [19]  0.48773017  0.61218570 -0.66860373 -0.31831967 -1.16119564  0.60003441
#> [25] -1.49167669 -1.05530366  0.11894684 -0.25818750 -0.84677252  2.07398325
#> [31] -0.60831152  0.78335902  0.45210259 -1.05652325 -0.30095115  0.20361402
#> [37] -1.36169564  0.11097343 -1.11684970  1.66399814  0.06007734  1.35932805
#> [43]  1.13993162  1.04056666  1.44447337 -1.09509360 -0.20536797 -0.22885541
#> [49] -1.06064057 -1.42084892  1.61972024  0.05055291 -0.73095552 -0.02253699
#> [55]  1.22242238 -1.30657291  0.64185024 -0.20405723  0.45268331 -0.81430453
#> [61] -1.11999100  0.61961511 -0.18541009  0.25505837 -0.11288202  0.10624340
#> [67]  1.27289077 -0.65136265  0.05857765  0.54267087  1.28711792 -1.22413234
#> [73] -0.26025788  1.88077852  0.97105882  0.11126840 -1.57443516  1.30479528
#> [79]  0.77987831 -0.50060114
#> 
#> $Forecasts_Train
#> Time Series:
#> Start = 1 
#> End = 80 
#> Frequency = 1 
#>       Series 1     Series 2     Series 3    Series 4    Series 5    Series 6
#>  1  0.49035870  0.900280120  3.149106584  0.46437044  1.71035305  0.33958138
#>  2  1.29856014 -0.241495179  1.767830806  0.85851602  1.67950686  2.57436136
#>  3  0.28742452  0.002112943  2.049470658  0.63612821  2.27472718  0.82215308
#>  4  0.26586712  0.252073962  1.027658636  2.51242817 -0.55670766  1.28138024
#>  5  1.06403760  2.166644019  1.526688482 -0.98958234 -0.75659683 -0.28676256
#>  6  0.72273245  1.019240683 -0.005815529  0.91806524 -0.73411887  0.99314071
#>  7  0.40760472  1.401171394  3.197404454  2.31845039 -0.91714470  2.60080835
#>  8  1.69111890  1.069845467  0.702314124  1.32960310  0.14908582  0.60056549
#>  9  0.53254793 -1.205506173 -0.163425224  1.07887669  0.43436698  2.21667485
#> 10  1.55818258  1.464048908 -0.560937779  0.96632378  0.59304219  0.11642798
#> 11  0.34223086  0.895949751  1.097984141  0.57108564  2.36118225 -0.17334560
#> 12  1.90763130  0.627971660  2.329258487  0.23239814  1.48491225  1.06812522
#> 13  1.55607918  1.379200372 -0.110599691  0.84442977  3.08698121  1.17980929
#> 14 -0.80581475 -1.004890326  2.010167512  2.00865252  1.46893454  1.05667256
#> 15  0.87430724  2.115190217  2.068816561  0.33768070  2.18911369  0.79610998
#> 16  2.14699845  2.613408288 -0.187365519  2.58519311  1.71322852  0.48814835
#> 17  2.62758961  1.568510929  1.708963397  0.60726478  2.85862373  1.63591495
#> 18  1.02754292  1.534428918  0.702916655  1.84197242  2.28961667  0.59101182
#> 19 -0.80362627  2.074658756  1.503916904  0.26679451  1.08495291  0.12775184
#> 20  3.19379384  0.086029912  1.429044295  2.91702809  0.88090793  0.09030641
#> 21  1.15147619 -0.196600889  1.038899464  2.08631377  2.84641728  0.02171143
#> 22  0.11329226 -0.051354817 -0.270471957  0.75203685  1.72469559  1.06147517
#> 23 -0.52730675 -0.644431851  1.336518748  2.68951417  0.50385051  2.02049362
#> 24  1.06343685  1.340013101  0.816299130  0.31409716 -0.09552238  0.89251584
#> 25  2.44035374  1.826320050  0.250284052  0.31616172  2.33152044  0.56948658
#> 26  0.61124939  0.147818461  1.100501383  0.07936381  2.11960963 -0.16021862
#> 27  1.16547789  1.662488840 -1.054171126  2.44943900  1.36484498  1.06396381
#> 28  0.65561619  2.596515342  2.804254467  1.76861728 -0.76243445  0.28346271
#> 29  1.59548588  0.648740322  3.043544311  2.34751346  1.30873823  2.93396120
#> 30 -0.14925506  0.367000085  1.221017455 -0.01794408  0.53307285 -0.09841434
#> 31  0.20209834  2.060188650  1.416987156  1.25954334 -1.26358591  0.50231918
#> 32  0.74339088  1.864128778 -0.133568286  0.32993216  1.93793288 -0.45490069
#> 33  0.07458618 -0.300486024 -0.357276791 -0.03109610  1.21784137 -1.32189721
#> 34  1.16581417  1.215292355  0.303869420 -0.17852637  0.53966693  0.54581364
#> 35  1.86729664 -0.010173163  0.916255662 -0.03674990  0.27750348  0.71456714
#> 36  1.17487414  2.798167464 -0.603860166  1.08169121 -0.34135847  1.72351212
#> 37  1.86361750  0.551169595  0.356379728  1.39451909  1.41614559 -0.27472929
#> 38  1.58464519  1.532836334  1.766030845 -0.09285101  2.04205620  1.40001639
#> 39  0.66919058  1.300832981 -0.568302346  1.05622671  0.79503770  1.49554501
#> 40  1.30578017  0.541273824  1.289982800  1.41616058  1.18654062  1.27708127
#> 41  0.96753762 -0.241957197  1.203216841 -0.50472343 -0.03517353  1.73085437
#> 42  3.84688023  3.978722899  0.282846256 -0.52705481  0.43860180  1.30048110
#> 43  1.49219553  0.551026149  0.502466673  1.70898499  2.21217630 -0.42535649
#> 44  1.43157315  0.822865021  1.408204053  0.27839911  1.44747061 -0.26097392
#> 45  1.30864534  2.136997979  1.382958103  2.66112171 -0.75693836 -0.10904965
#> 46  1.07332106  1.658319788  0.001486564  1.17064527  0.83317998  1.28915016
#> 47  1.83151376  1.097060723  1.910345038  0.42665777  0.05433657  0.40084826
#> 48  1.76206608  2.692937337  2.930613267  1.34124462  0.03187431  0.11171237
#> 49  0.86774028 -0.526270161  0.960831119 -0.03512074  1.29994442  0.62686894
#> 50  1.33256468  1.538898972  1.198609355  0.45814060  1.12740128  1.06682605
#> 51 -0.47332243 -0.134711092  0.658499779  2.10389238  0.28127889  2.20363134
#> 52  0.89825061  1.692757571  0.160376162  0.72750150 -0.53798220  0.85462936
#> 53 -0.71793245  0.209596475  2.715632975  2.07031297  2.22030106  1.84828597
#> 54  0.24569425  1.039674956  0.852893054  0.19913196  1.13654499  1.30626366
#> 55  0.40246995  1.554239163  0.794617003  0.70033910  0.27802854  0.55639267
#> 56  1.45619783  1.268076364  1.257291618 -0.41035644 -0.18956674  2.40499675
#> 57 -0.12867484  3.076600798  0.718096693  0.58409047  0.43987850  2.56109440
#> 58  2.39187213  0.953676226  0.437945903  2.13261053  0.96516226  0.89035456
#> 59  0.01381174  1.126990621  2.438027039  0.02707141  0.02924701 -0.28576661
#> 60  1.24736147  0.078583502  0.168934646  2.31967808  0.31784723  0.82667061
#> 61  0.52179143 -0.723432837  0.722708657  2.12845772 -0.65727594  1.07993430
#> 62  0.47616934  2.304859390  0.305688670  2.44005492  2.35437176  2.19821615
#> 63  1.06647309  0.999234408  2.425531551  0.37943573 -0.34087915  2.41264420
#> 64  2.99995832  1.165681695  0.517560044  0.76812127  0.14978533  1.13943035
#> 65  0.60378299  0.941669426  1.114673583  1.60123284 -0.46883665  2.18068910
#> 66 -0.61924429  1.384093132  2.105294105  0.44256679  1.11567925  1.70342419
#> 67  0.45119769  0.928279542  0.624233078 -0.33337714  1.14419836  1.67898783
#> 68  1.60586942  1.316623500  1.862004837  2.20678683  1.02960004  2.10339785
#> 69  2.03823465  0.654320732  1.277032722  2.29525044  2.53412814  1.51712787
#> 70 -0.20250667  0.213155497  1.337860721  0.43486175  1.61599417  1.39528062
#> 71  0.82448322  0.180353110 -1.430270245 -0.30064557  0.56909209  1.12032389
#> 72  1.70980177  1.371194700  2.406439541 -0.17450618  1.80849261 -0.31276376
#> 73  0.46912511  0.207248041  0.112389484  0.33087409  2.31663838  1.21793320
#> 74  0.86465865  0.654477007  1.441556058  1.02219381  2.45161737  1.13355408
#> 75  0.91113580  0.882585915  0.450350377  0.01045436  2.22567289  1.21228962
#> 76  0.87926484  0.283824915  0.168281256  2.06337540  1.27932859 -1.51274244
#> 77  2.42907726 -0.003295331  0.245012886  1.62183910  0.66378049  2.05924828
#> 78  0.69938455  3.364062893  1.201520525  1.56605575  0.01440620  0.86853876
#> 79  1.34113381  1.903969928  0.363036108  1.90006928  0.45562589  2.54274721
#> 80  2.81163825  2.658749238  0.323114031  0.77066651  1.63613206  1.21669940
#>       Series 7    Series 8    Series 9   Series 10
#>  1  0.85505494  3.91371591  0.98942111  0.19428752
#>  2  0.72848170 -0.60962376  1.88108433  1.63362545
#>  3  2.25262607  0.01751107 -1.67749574  2.21481436
#>  4 -0.78006982  0.48933195  1.79620347  0.29995128
#>  5  2.92579293  0.38117873  0.48538920  1.09179893
#>  6  1.61582847 -0.13977187 -2.03856976  0.22567676
#>  7  1.58505899  0.46368934  1.77696369  1.90747895
#>  8 -0.36244767  1.86970373 -0.57831478 -1.04241291
#>  9 -0.16788843  2.27819188  1.68408009  1.69154955
#> 10  1.78825532  0.17670473  0.96750101 -0.06905579
#> 11  0.79638630  1.82355658  2.16444998 -0.46970765
#> 12  1.17175879  0.68717926  1.18557708  2.66229690
#> 13  0.97827039  1.21522900 -0.11277775  0.82153004
#> 14  1.56374507  0.65963727  1.80440348  1.28718226
#> 15  0.76321697 -0.38048976  1.20848684  0.91861461
#> 16  1.05391798  2.50321203  1.35235972  1.57563848
#> 17  0.31255651  1.76727933  0.46222042  2.39190256
#> 18  0.17681827  1.09670182  0.54365509  0.73019364
#> 19  0.44079819 -0.54899892 -1.00079923  1.54502709
#> 20  0.91030261  1.99025535  2.29071377  0.22455937
#> 21 -0.31239889  0.11716066  1.75785227  2.04599941
#> 22  1.18857317  2.11598653  1.10785113  2.35656135
#> 23  0.09522516 -1.09890000  1.59356777 -0.61276485
#> 24 -0.34638129  2.05279721  1.11149809  1.90211785
#> 25  0.68182384  1.33247519  0.28028114  1.73332404
#> 26  0.45319854 -0.11823245  1.70003447  2.54327731
#> 27  1.16360222  2.93411500  2.35354562  0.58515503
#> 28  0.01356092  0.23022349  2.13331046  1.26926129
#> 29  1.66865272  2.02038894  2.11074333  1.58435749
#> 30  0.17115411  0.78157083  0.89827863  0.68346651
#> 31  1.66570148  0.87255867  0.52996908  0.21212636
#> 32 -0.89634956  0.76042865 -1.07028857  0.61946298
#> 33  2.25551925 -0.07730710  2.05413101  0.93412275
#> 34  0.55883657 -0.78824814  1.22819036 -0.09929003
#> 35  2.80619254 -0.18593829 -0.70573457 -0.56296418
#> 36  0.40800620  1.09284674 -0.15669929 -0.16340657
#> 37  1.88950391  0.02285816  1.25275921  1.95261152
#> 38  1.18467150  1.07814076  1.46123347  1.89518638
#> 39  3.40058614  1.64947199  1.23982474  1.37366894
#> 40 -0.60291203  2.96577802  1.27435099  0.36342315
#> 41  1.79416950 -0.08485201  1.55414240  0.74210636
#> 42  0.48778065  0.25138833  2.11973175  0.63214593
#> 43 -0.07866404 -1.60315888  1.58706314  3.53679844
#> 44  1.07005877  0.66287890  3.43790459  1.91911025
#> 45  0.92795131  0.53912555  0.01947789  0.84162627
#> 46  1.02028741  3.38797802  0.76937009  1.12088276
#> 47  0.88452044  1.52196707  1.00042240 -0.45226374
#> 48 -0.20934950  1.03698765  0.33467700  1.29205312
#> 49 -0.10762520 -0.63649277  0.88391871  0.09264714
#> 50  1.77776598  0.50837405  0.80914416  0.37013699
#> 51  1.29708561  1.89786074  1.37809278  0.83128843
#> 52 -1.23586938  1.70222734  0.21292087  0.35790268
#> 53  0.73057350 -1.34641829  0.34107469  0.25264315
#> 54  1.80402475  0.90354444  2.22629344  0.10179832
#> 55 -0.09518811  1.28584865  1.98574531  2.95447612
#> 56  0.02116943  2.27015607  2.90747707 -2.51178876
#> 57  0.75269527 -0.79585602  0.47469585  2.60194143
#> 58  1.00735801  0.47228407  1.57201134  0.43827222
#> 59  0.54823456  1.59725987  1.45826381  2.05537311
#> 60 -0.03348150  3.75767673  1.29687349  0.87961405
#> 61  2.55854567  2.52794529  0.04065551  0.33866323
#> 62  1.54165973  2.95546755  1.29645417 -0.33659460
#> 63  0.17645766  0.33503500  1.05424069  1.35096380
#> 64  2.07253001 -1.44750391 -0.71805934  0.73086714
#> 65 -0.46561815 -0.21332951  2.95746011 -0.15953117
#> 66  0.75260718  1.39157383 -0.32167992  1.59336963
#> 67  1.15098622  1.21169905 -0.55743786 -0.19719721
#> 68  2.43533756 -0.19817043  2.46791159  0.81850573
#> 69  2.86002736  0.47833999  0.96273726 -0.01392764
#> 70  0.78241759  0.90047440  1.10788248  1.43907960
#> 71  0.15803445  1.16385385  1.77717612  2.55008375
#> 72  1.27653493 -0.78445452  0.07902372 -0.05446601
#> 73  0.19517838  0.47564812  2.38264151 -0.29034513
#> 74  0.32338238 -0.31142110  2.29459293  0.82536649
#> 75  1.94666605  0.83778725  1.86281467  0.49043168
#> 76  1.38864955 -0.46483909  2.22605321  0.40146523
#> 77  1.70864246  0.14608079  1.36502343  0.02282874
#> 78  1.69960394  1.60676966  0.73658556  1.92849899
#> 79  1.52521772  1.40285543  1.62074063  3.22382898
#> 80  0.67784463  1.25943923  1.23617040  0.16295846
#> 
#> $nmodels
#> [1] 10
#> 
#> $modelnames
#>  [1] "Series 1"  "Series 2"  "Series 3"  "Series 4"  "Series 5"  "Series 6" 
#>  [7] "Series 7"  "Series 8"  "Series 9"  "Series 10"
#> 
#> attr(,"class")
#> [1] "foreccomb"

## Example with a training set and future individual forecasts:
foreccomb(train_o, train_p, newpreds=test_p)
#> $Actual_Train
#> Time Series:
#> Start = 1 
#> End = 80 
#> Frequency = 1 
#>  [1]  0.43400756 -0.60936755  1.73788479  0.17019650 -0.60997495 -0.88493843
#>  [7] -3.04292016 -0.80547635  1.48667223 -0.81349723 -0.98581235  0.32692250
#> [13] -1.14354994  1.11520398  0.16205873 -1.45973711  0.88362320 -0.95163208
#> [19]  0.48773017  0.61218570 -0.66860373 -0.31831967 -1.16119564  0.60003441
#> [25] -1.49167669 -1.05530366  0.11894684 -0.25818750 -0.84677252  2.07398325
#> [31] -0.60831152  0.78335902  0.45210259 -1.05652325 -0.30095115  0.20361402
#> [37] -1.36169564  0.11097343 -1.11684970  1.66399814  0.06007734  1.35932805
#> [43]  1.13993162  1.04056666  1.44447337 -1.09509360 -0.20536797 -0.22885541
#> [49] -1.06064057 -1.42084892  1.61972024  0.05055291 -0.73095552 -0.02253699
#> [55]  1.22242238 -1.30657291  0.64185024 -0.20405723  0.45268331 -0.81430453
#> [61] -1.11999100  0.61961511 -0.18541009  0.25505837 -0.11288202  0.10624340
#> [67]  1.27289077 -0.65136265  0.05857765  0.54267087  1.28711792 -1.22413234
#> [73] -0.26025788  1.88077852  0.97105882  0.11126840 -1.57443516  1.30479528
#> [79]  0.77987831 -0.50060114
#> 
#> $Forecasts_Train
#> Time Series:
#> Start = 1 
#> End = 80 
#> Frequency = 1 
#>       Series 1     Series 2     Series 3    Series 4    Series 5    Series 6
#>  1  0.49035870  0.900280120  3.149106584  0.46437044  1.71035305  0.33958138
#>  2  1.29856014 -0.241495179  1.767830806  0.85851602  1.67950686  2.57436136
#>  3  0.28742452  0.002112943  2.049470658  0.63612821  2.27472718  0.82215308
#>  4  0.26586712  0.252073962  1.027658636  2.51242817 -0.55670766  1.28138024
#>  5  1.06403760  2.166644019  1.526688482 -0.98958234 -0.75659683 -0.28676256
#>  6  0.72273245  1.019240683 -0.005815529  0.91806524 -0.73411887  0.99314071
#>  7  0.40760472  1.401171394  3.197404454  2.31845039 -0.91714470  2.60080835
#>  8  1.69111890  1.069845467  0.702314124  1.32960310  0.14908582  0.60056549
#>  9  0.53254793 -1.205506173 -0.163425224  1.07887669  0.43436698  2.21667485
#> 10  1.55818258  1.464048908 -0.560937779  0.96632378  0.59304219  0.11642798
#> 11  0.34223086  0.895949751  1.097984141  0.57108564  2.36118225 -0.17334560
#> 12  1.90763130  0.627971660  2.329258487  0.23239814  1.48491225  1.06812522
#> 13  1.55607918  1.379200372 -0.110599691  0.84442977  3.08698121  1.17980929
#> 14 -0.80581475 -1.004890326  2.010167512  2.00865252  1.46893454  1.05667256
#> 15  0.87430724  2.115190217  2.068816561  0.33768070  2.18911369  0.79610998
#> 16  2.14699845  2.613408288 -0.187365519  2.58519311  1.71322852  0.48814835
#> 17  2.62758961  1.568510929  1.708963397  0.60726478  2.85862373  1.63591495
#> 18  1.02754292  1.534428918  0.702916655  1.84197242  2.28961667  0.59101182
#> 19 -0.80362627  2.074658756  1.503916904  0.26679451  1.08495291  0.12775184
#> 20  3.19379384  0.086029912  1.429044295  2.91702809  0.88090793  0.09030641
#> 21  1.15147619 -0.196600889  1.038899464  2.08631377  2.84641728  0.02171143
#> 22  0.11329226 -0.051354817 -0.270471957  0.75203685  1.72469559  1.06147517
#> 23 -0.52730675 -0.644431851  1.336518748  2.68951417  0.50385051  2.02049362
#> 24  1.06343685  1.340013101  0.816299130  0.31409716 -0.09552238  0.89251584
#> 25  2.44035374  1.826320050  0.250284052  0.31616172  2.33152044  0.56948658
#> 26  0.61124939  0.147818461  1.100501383  0.07936381  2.11960963 -0.16021862
#> 27  1.16547789  1.662488840 -1.054171126  2.44943900  1.36484498  1.06396381
#> 28  0.65561619  2.596515342  2.804254467  1.76861728 -0.76243445  0.28346271
#> 29  1.59548588  0.648740322  3.043544311  2.34751346  1.30873823  2.93396120
#> 30 -0.14925506  0.367000085  1.221017455 -0.01794408  0.53307285 -0.09841434
#> 31  0.20209834  2.060188650  1.416987156  1.25954334 -1.26358591  0.50231918
#> 32  0.74339088  1.864128778 -0.133568286  0.32993216  1.93793288 -0.45490069
#> 33  0.07458618 -0.300486024 -0.357276791 -0.03109610  1.21784137 -1.32189721
#> 34  1.16581417  1.215292355  0.303869420 -0.17852637  0.53966693  0.54581364
#> 35  1.86729664 -0.010173163  0.916255662 -0.03674990  0.27750348  0.71456714
#> 36  1.17487414  2.798167464 -0.603860166  1.08169121 -0.34135847  1.72351212
#> 37  1.86361750  0.551169595  0.356379728  1.39451909  1.41614559 -0.27472929
#> 38  1.58464519  1.532836334  1.766030845 -0.09285101  2.04205620  1.40001639
#> 39  0.66919058  1.300832981 -0.568302346  1.05622671  0.79503770  1.49554501
#> 40  1.30578017  0.541273824  1.289982800  1.41616058  1.18654062  1.27708127
#> 41  0.96753762 -0.241957197  1.203216841 -0.50472343 -0.03517353  1.73085437
#> 42  3.84688023  3.978722899  0.282846256 -0.52705481  0.43860180  1.30048110
#> 43  1.49219553  0.551026149  0.502466673  1.70898499  2.21217630 -0.42535649
#> 44  1.43157315  0.822865021  1.408204053  0.27839911  1.44747061 -0.26097392
#> 45  1.30864534  2.136997979  1.382958103  2.66112171 -0.75693836 -0.10904965
#> 46  1.07332106  1.658319788  0.001486564  1.17064527  0.83317998  1.28915016
#> 47  1.83151376  1.097060723  1.910345038  0.42665777  0.05433657  0.40084826
#> 48  1.76206608  2.692937337  2.930613267  1.34124462  0.03187431  0.11171237
#> 49  0.86774028 -0.526270161  0.960831119 -0.03512074  1.29994442  0.62686894
#> 50  1.33256468  1.538898972  1.198609355  0.45814060  1.12740128  1.06682605
#> 51 -0.47332243 -0.134711092  0.658499779  2.10389238  0.28127889  2.20363134
#> 52  0.89825061  1.692757571  0.160376162  0.72750150 -0.53798220  0.85462936
#> 53 -0.71793245  0.209596475  2.715632975  2.07031297  2.22030106  1.84828597
#> 54  0.24569425  1.039674956  0.852893054  0.19913196  1.13654499  1.30626366
#> 55  0.40246995  1.554239163  0.794617003  0.70033910  0.27802854  0.55639267
#> 56  1.45619783  1.268076364  1.257291618 -0.41035644 -0.18956674  2.40499675
#> 57 -0.12867484  3.076600798  0.718096693  0.58409047  0.43987850  2.56109440
#> 58  2.39187213  0.953676226  0.437945903  2.13261053  0.96516226  0.89035456
#> 59  0.01381174  1.126990621  2.438027039  0.02707141  0.02924701 -0.28576661
#> 60  1.24736147  0.078583502  0.168934646  2.31967808  0.31784723  0.82667061
#> 61  0.52179143 -0.723432837  0.722708657  2.12845772 -0.65727594  1.07993430
#> 62  0.47616934  2.304859390  0.305688670  2.44005492  2.35437176  2.19821615
#> 63  1.06647309  0.999234408  2.425531551  0.37943573 -0.34087915  2.41264420
#> 64  2.99995832  1.165681695  0.517560044  0.76812127  0.14978533  1.13943035
#> 65  0.60378299  0.941669426  1.114673583  1.60123284 -0.46883665  2.18068910
#> 66 -0.61924429  1.384093132  2.105294105  0.44256679  1.11567925  1.70342419
#> 67  0.45119769  0.928279542  0.624233078 -0.33337714  1.14419836  1.67898783
#> 68  1.60586942  1.316623500  1.862004837  2.20678683  1.02960004  2.10339785
#> 69  2.03823465  0.654320732  1.277032722  2.29525044  2.53412814  1.51712787
#> 70 -0.20250667  0.213155497  1.337860721  0.43486175  1.61599417  1.39528062
#> 71  0.82448322  0.180353110 -1.430270245 -0.30064557  0.56909209  1.12032389
#> 72  1.70980177  1.371194700  2.406439541 -0.17450618  1.80849261 -0.31276376
#> 73  0.46912511  0.207248041  0.112389484  0.33087409  2.31663838  1.21793320
#> 74  0.86465865  0.654477007  1.441556058  1.02219381  2.45161737  1.13355408
#> 75  0.91113580  0.882585915  0.450350377  0.01045436  2.22567289  1.21228962
#> 76  0.87926484  0.283824915  0.168281256  2.06337540  1.27932859 -1.51274244
#> 77  2.42907726 -0.003295331  0.245012886  1.62183910  0.66378049  2.05924828
#> 78  0.69938455  3.364062893  1.201520525  1.56605575  0.01440620  0.86853876
#> 79  1.34113381  1.903969928  0.363036108  1.90006928  0.45562589  2.54274721
#> 80  2.81163825  2.658749238  0.323114031  0.77066651  1.63613206  1.21669940
#>       Series 7    Series 8    Series 9   Series 10
#>  1  0.85505494  3.91371591  0.98942111  0.19428752
#>  2  0.72848170 -0.60962376  1.88108433  1.63362545
#>  3  2.25262607  0.01751107 -1.67749574  2.21481436
#>  4 -0.78006982  0.48933195  1.79620347  0.29995128
#>  5  2.92579293  0.38117873  0.48538920  1.09179893
#>  6  1.61582847 -0.13977187 -2.03856976  0.22567676
#>  7  1.58505899  0.46368934  1.77696369  1.90747895
#>  8 -0.36244767  1.86970373 -0.57831478 -1.04241291
#>  9 -0.16788843  2.27819188  1.68408009  1.69154955
#> 10  1.78825532  0.17670473  0.96750101 -0.06905579
#> 11  0.79638630  1.82355658  2.16444998 -0.46970765
#> 12  1.17175879  0.68717926  1.18557708  2.66229690
#> 13  0.97827039  1.21522900 -0.11277775  0.82153004
#> 14  1.56374507  0.65963727  1.80440348  1.28718226
#> 15  0.76321697 -0.38048976  1.20848684  0.91861461
#> 16  1.05391798  2.50321203  1.35235972  1.57563848
#> 17  0.31255651  1.76727933  0.46222042  2.39190256
#> 18  0.17681827  1.09670182  0.54365509  0.73019364
#> 19  0.44079819 -0.54899892 -1.00079923  1.54502709
#> 20  0.91030261  1.99025535  2.29071377  0.22455937
#> 21 -0.31239889  0.11716066  1.75785227  2.04599941
#> 22  1.18857317  2.11598653  1.10785113  2.35656135
#> 23  0.09522516 -1.09890000  1.59356777 -0.61276485
#> 24 -0.34638129  2.05279721  1.11149809  1.90211785
#> 25  0.68182384  1.33247519  0.28028114  1.73332404
#> 26  0.45319854 -0.11823245  1.70003447  2.54327731
#> 27  1.16360222  2.93411500  2.35354562  0.58515503
#> 28  0.01356092  0.23022349  2.13331046  1.26926129
#> 29  1.66865272  2.02038894  2.11074333  1.58435749
#> 30  0.17115411  0.78157083  0.89827863  0.68346651
#> 31  1.66570148  0.87255867  0.52996908  0.21212636
#> 32 -0.89634956  0.76042865 -1.07028857  0.61946298
#> 33  2.25551925 -0.07730710  2.05413101  0.93412275
#> 34  0.55883657 -0.78824814  1.22819036 -0.09929003
#> 35  2.80619254 -0.18593829 -0.70573457 -0.56296418
#> 36  0.40800620  1.09284674 -0.15669929 -0.16340657
#> 37  1.88950391  0.02285816  1.25275921  1.95261152
#> 38  1.18467150  1.07814076  1.46123347  1.89518638
#> 39  3.40058614  1.64947199  1.23982474  1.37366894
#> 40 -0.60291203  2.96577802  1.27435099  0.36342315
#> 41  1.79416950 -0.08485201  1.55414240  0.74210636
#> 42  0.48778065  0.25138833  2.11973175  0.63214593
#> 43 -0.07866404 -1.60315888  1.58706314  3.53679844
#> 44  1.07005877  0.66287890  3.43790459  1.91911025
#> 45  0.92795131  0.53912555  0.01947789  0.84162627
#> 46  1.02028741  3.38797802  0.76937009  1.12088276
#> 47  0.88452044  1.52196707  1.00042240 -0.45226374
#> 48 -0.20934950  1.03698765  0.33467700  1.29205312
#> 49 -0.10762520 -0.63649277  0.88391871  0.09264714
#> 50  1.77776598  0.50837405  0.80914416  0.37013699
#> 51  1.29708561  1.89786074  1.37809278  0.83128843
#> 52 -1.23586938  1.70222734  0.21292087  0.35790268
#> 53  0.73057350 -1.34641829  0.34107469  0.25264315
#> 54  1.80402475  0.90354444  2.22629344  0.10179832
#> 55 -0.09518811  1.28584865  1.98574531  2.95447612
#> 56  0.02116943  2.27015607  2.90747707 -2.51178876
#> 57  0.75269527 -0.79585602  0.47469585  2.60194143
#> 58  1.00735801  0.47228407  1.57201134  0.43827222
#> 59  0.54823456  1.59725987  1.45826381  2.05537311
#> 60 -0.03348150  3.75767673  1.29687349  0.87961405
#> 61  2.55854567  2.52794529  0.04065551  0.33866323
#> 62  1.54165973  2.95546755  1.29645417 -0.33659460
#> 63  0.17645766  0.33503500  1.05424069  1.35096380
#> 64  2.07253001 -1.44750391 -0.71805934  0.73086714
#> 65 -0.46561815 -0.21332951  2.95746011 -0.15953117
#> 66  0.75260718  1.39157383 -0.32167992  1.59336963
#> 67  1.15098622  1.21169905 -0.55743786 -0.19719721
#> 68  2.43533756 -0.19817043  2.46791159  0.81850573
#> 69  2.86002736  0.47833999  0.96273726 -0.01392764
#> 70  0.78241759  0.90047440  1.10788248  1.43907960
#> 71  0.15803445  1.16385385  1.77717612  2.55008375
#> 72  1.27653493 -0.78445452  0.07902372 -0.05446601
#> 73  0.19517838  0.47564812  2.38264151 -0.29034513
#> 74  0.32338238 -0.31142110  2.29459293  0.82536649
#> 75  1.94666605  0.83778725  1.86281467  0.49043168
#> 76  1.38864955 -0.46483909  2.22605321  0.40146523
#> 77  1.70864246  0.14608079  1.36502343  0.02282874
#> 78  1.69960394  1.60676966  0.73658556  1.92849899
#> 79  1.52521772  1.40285543  1.62074063  3.22382898
#> 80  0.67784463  1.25943923  1.23617040  0.16295846
#> 
#> $Forecasts_Test
#>         Series 1   Series 2    Series 3   Series 4    Series 5     Series 6
#>  [1,]  1.0396779 -0.1547477  0.94766255  0.6166052  1.73137508  1.749505054
#>  [2,]  1.1105157  1.7950136  1.14346187  1.6025761  0.54149575  1.366898378
#>  [3,]  0.7637506 -1.0685581 -0.08246236  0.9373998  1.67573909  1.070557906
#>  [4,] -0.7623823 -0.1847903  0.27940594  0.3387729  1.48134055  2.672766891
#>  [5,]  0.1288254 -0.6132547  0.42300595  0.7817999  1.87164060 -0.002845736
#>  [6,]  1.4834304  1.9101009  0.23729651  0.1702420 -0.65184283  0.299514286
#>  [7,]  0.2179225 -0.7385002  1.59892196  0.9275215  1.33491255  1.222422616
#>  [8,] -1.2733756  0.2470395 -0.06904203  1.5575982  1.79522903  1.086031224
#>  [9,]  0.5590132  0.8532531  1.14801652  1.8710160  1.18263895  2.365382178
#> [10,]  2.4342722  1.6043699  0.32728917  3.2087845 -1.60719862  2.182661131
#> [11,]  1.3154555  1.1059816  1.49144813  0.8274347  0.37433506 -0.191384046
#> [12,]  0.1531057  1.3636265  1.41103370  3.3807557  0.07139792  0.243370008
#> [13,]  0.6979055 -1.2948465  1.18207505  1.3422611  0.74328247  0.565966297
#> [14,] -0.1842124 -0.3674118  0.70430033 -0.4685462  1.93460094  2.451656541
#> [15,]  1.1265487  0.4436025  0.47320421  0.6035392 -0.43030460 -1.053324277
#> [16,]  1.4231193  0.5327091  1.82319335  0.6823043  2.44524355 -0.726470671
#> [17,]  0.8334510  1.9400414  0.11962566  0.5335695  1.35620516  0.469767247
#> [18,] -0.1161532  3.0370221  2.60440410  1.3173283  1.54267112  0.097174697
#> [19,]  0.9343619  2.1490702  0.43110564  1.0497441  1.35252560  2.564368980
#> [20,]  1.0706427  1.6612350  0.72623504  0.8931920 -0.25242527 -0.215037302
#>         Series 7   Series 8     Series 9  Series 10
#>  [1,]  1.7309048  1.8601615  2.100889241 -0.3009883
#>  [2,]  0.1200523  2.5844173  1.110309145 -0.2868684
#>  [3,]  0.7150072  2.5345918  0.672476901  2.0869902
#>  [4,]  1.2491122  1.0006277  2.409821716  0.2162513
#>  [5,]  1.3617060  0.7439716  1.619293386  1.6300958
#>  [6,]  1.2758282  1.1639578 -0.124764889  0.1194568
#>  [7,] -0.9108016  0.8437130  2.010754374  2.1770847
#>  [8,]  0.4594004  0.7566662  1.351167205 -1.5815672
#>  [9,]  1.7937665  1.9191180  1.577288619  0.8546950
#> [10,]  1.2798317 -1.0798848  1.212641960  1.1435343
#> [11,]  1.6575819  2.4445059  0.009767569  0.4094421
#> [12,]  1.0331844  0.7894211 -1.366822278 -0.3941232
#> [13,]  0.9895685  1.8263824 -0.530007326  0.3747736
#> [14,]  1.5624163  0.7254844  0.519938649  1.2070607
#> [15,]  1.4844774  1.2411993  1.255845161  1.9141898
#> [16,]  1.3055481  1.5785884 -1.072573471  2.2720648
#> [17,]  1.3932659  2.1598189  1.206692008  1.4849038
#> [18,]  2.6023967  1.9298885  2.417626146  1.8623553
#> [19,]  0.8235486  0.9438242  3.012584580  0.9878838
#> [20,]  0.7109637 -0.3230244  0.623181569  1.4882737
#> 
#> $nmodels
#> [1] 10
#> 
#> $modelnames
#>  [1] "Series 1"  "Series 2"  "Series 3"  "Series 4"  "Series 5"  "Series 6" 
#>  [7] "Series 7"  "Series 8"  "Series 9"  "Series 10"
#> 
#> attr(,"class")
#> [1] "foreccomb"

## Example with a training set and a full test set:
foreccomb(train_o, train_p, test_o, test_p)
#> $Actual_Train
#> Time Series:
#> Start = 1 
#> End = 80 
#> Frequency = 1 
#>  [1]  0.43400756 -0.60936755  1.73788479  0.17019650 -0.60997495 -0.88493843
#>  [7] -3.04292016 -0.80547635  1.48667223 -0.81349723 -0.98581235  0.32692250
#> [13] -1.14354994  1.11520398  0.16205873 -1.45973711  0.88362320 -0.95163208
#> [19]  0.48773017  0.61218570 -0.66860373 -0.31831967 -1.16119564  0.60003441
#> [25] -1.49167669 -1.05530366  0.11894684 -0.25818750 -0.84677252  2.07398325
#> [31] -0.60831152  0.78335902  0.45210259 -1.05652325 -0.30095115  0.20361402
#> [37] -1.36169564  0.11097343 -1.11684970  1.66399814  0.06007734  1.35932805
#> [43]  1.13993162  1.04056666  1.44447337 -1.09509360 -0.20536797 -0.22885541
#> [49] -1.06064057 -1.42084892  1.61972024  0.05055291 -0.73095552 -0.02253699
#> [55]  1.22242238 -1.30657291  0.64185024 -0.20405723  0.45268331 -0.81430453
#> [61] -1.11999100  0.61961511 -0.18541009  0.25505837 -0.11288202  0.10624340
#> [67]  1.27289077 -0.65136265  0.05857765  0.54267087  1.28711792 -1.22413234
#> [73] -0.26025788  1.88077852  0.97105882  0.11126840 -1.57443516  1.30479528
#> [79]  0.77987831 -0.50060114
#> 
#> $Forecasts_Train
#> Time Series:
#> Start = 1 
#> End = 80 
#> Frequency = 1 
#>       Series 1     Series 2     Series 3    Series 4    Series 5    Series 6
#>  1  0.49035870  0.900280120  3.149106584  0.46437044  1.71035305  0.33958138
#>  2  1.29856014 -0.241495179  1.767830806  0.85851602  1.67950686  2.57436136
#>  3  0.28742452  0.002112943  2.049470658  0.63612821  2.27472718  0.82215308
#>  4  0.26586712  0.252073962  1.027658636  2.51242817 -0.55670766  1.28138024
#>  5  1.06403760  2.166644019  1.526688482 -0.98958234 -0.75659683 -0.28676256
#>  6  0.72273245  1.019240683 -0.005815529  0.91806524 -0.73411887  0.99314071
#>  7  0.40760472  1.401171394  3.197404454  2.31845039 -0.91714470  2.60080835
#>  8  1.69111890  1.069845467  0.702314124  1.32960310  0.14908582  0.60056549
#>  9  0.53254793 -1.205506173 -0.163425224  1.07887669  0.43436698  2.21667485
#> 10  1.55818258  1.464048908 -0.560937779  0.96632378  0.59304219  0.11642798
#> 11  0.34223086  0.895949751  1.097984141  0.57108564  2.36118225 -0.17334560
#> 12  1.90763130  0.627971660  2.329258487  0.23239814  1.48491225  1.06812522
#> 13  1.55607918  1.379200372 -0.110599691  0.84442977  3.08698121  1.17980929
#> 14 -0.80581475 -1.004890326  2.010167512  2.00865252  1.46893454  1.05667256
#> 15  0.87430724  2.115190217  2.068816561  0.33768070  2.18911369  0.79610998
#> 16  2.14699845  2.613408288 -0.187365519  2.58519311  1.71322852  0.48814835
#> 17  2.62758961  1.568510929  1.708963397  0.60726478  2.85862373  1.63591495
#> 18  1.02754292  1.534428918  0.702916655  1.84197242  2.28961667  0.59101182
#> 19 -0.80362627  2.074658756  1.503916904  0.26679451  1.08495291  0.12775184
#> 20  3.19379384  0.086029912  1.429044295  2.91702809  0.88090793  0.09030641
#> 21  1.15147619 -0.196600889  1.038899464  2.08631377  2.84641728  0.02171143
#> 22  0.11329226 -0.051354817 -0.270471957  0.75203685  1.72469559  1.06147517
#> 23 -0.52730675 -0.644431851  1.336518748  2.68951417  0.50385051  2.02049362
#> 24  1.06343685  1.340013101  0.816299130  0.31409716 -0.09552238  0.89251584
#> 25  2.44035374  1.826320050  0.250284052  0.31616172  2.33152044  0.56948658
#> 26  0.61124939  0.147818461  1.100501383  0.07936381  2.11960963 -0.16021862
#> 27  1.16547789  1.662488840 -1.054171126  2.44943900  1.36484498  1.06396381
#> 28  0.65561619  2.596515342  2.804254467  1.76861728 -0.76243445  0.28346271
#> 29  1.59548588  0.648740322  3.043544311  2.34751346  1.30873823  2.93396120
#> 30 -0.14925506  0.367000085  1.221017455 -0.01794408  0.53307285 -0.09841434
#> 31  0.20209834  2.060188650  1.416987156  1.25954334 -1.26358591  0.50231918
#> 32  0.74339088  1.864128778 -0.133568286  0.32993216  1.93793288 -0.45490069
#> 33  0.07458618 -0.300486024 -0.357276791 -0.03109610  1.21784137 -1.32189721
#> 34  1.16581417  1.215292355  0.303869420 -0.17852637  0.53966693  0.54581364
#> 35  1.86729664 -0.010173163  0.916255662 -0.03674990  0.27750348  0.71456714
#> 36  1.17487414  2.798167464 -0.603860166  1.08169121 -0.34135847  1.72351212
#> 37  1.86361750  0.551169595  0.356379728  1.39451909  1.41614559 -0.27472929
#> 38  1.58464519  1.532836334  1.766030845 -0.09285101  2.04205620  1.40001639
#> 39  0.66919058  1.300832981 -0.568302346  1.05622671  0.79503770  1.49554501
#> 40  1.30578017  0.541273824  1.289982800  1.41616058  1.18654062  1.27708127
#> 41  0.96753762 -0.241957197  1.203216841 -0.50472343 -0.03517353  1.73085437
#> 42  3.84688023  3.978722899  0.282846256 -0.52705481  0.43860180  1.30048110
#> 43  1.49219553  0.551026149  0.502466673  1.70898499  2.21217630 -0.42535649
#> 44  1.43157315  0.822865021  1.408204053  0.27839911  1.44747061 -0.26097392
#> 45  1.30864534  2.136997979  1.382958103  2.66112171 -0.75693836 -0.10904965
#> 46  1.07332106  1.658319788  0.001486564  1.17064527  0.83317998  1.28915016
#> 47  1.83151376  1.097060723  1.910345038  0.42665777  0.05433657  0.40084826
#> 48  1.76206608  2.692937337  2.930613267  1.34124462  0.03187431  0.11171237
#> 49  0.86774028 -0.526270161  0.960831119 -0.03512074  1.29994442  0.62686894
#> 50  1.33256468  1.538898972  1.198609355  0.45814060  1.12740128  1.06682605
#> 51 -0.47332243 -0.134711092  0.658499779  2.10389238  0.28127889  2.20363134
#> 52  0.89825061  1.692757571  0.160376162  0.72750150 -0.53798220  0.85462936
#> 53 -0.71793245  0.209596475  2.715632975  2.07031297  2.22030106  1.84828597
#> 54  0.24569425  1.039674956  0.852893054  0.19913196  1.13654499  1.30626366
#> 55  0.40246995  1.554239163  0.794617003  0.70033910  0.27802854  0.55639267
#> 56  1.45619783  1.268076364  1.257291618 -0.41035644 -0.18956674  2.40499675
#> 57 -0.12867484  3.076600798  0.718096693  0.58409047  0.43987850  2.56109440
#> 58  2.39187213  0.953676226  0.437945903  2.13261053  0.96516226  0.89035456
#> 59  0.01381174  1.126990621  2.438027039  0.02707141  0.02924701 -0.28576661
#> 60  1.24736147  0.078583502  0.168934646  2.31967808  0.31784723  0.82667061
#> 61  0.52179143 -0.723432837  0.722708657  2.12845772 -0.65727594  1.07993430
#> 62  0.47616934  2.304859390  0.305688670  2.44005492  2.35437176  2.19821615
#> 63  1.06647309  0.999234408  2.425531551  0.37943573 -0.34087915  2.41264420
#> 64  2.99995832  1.165681695  0.517560044  0.76812127  0.14978533  1.13943035
#> 65  0.60378299  0.941669426  1.114673583  1.60123284 -0.46883665  2.18068910
#> 66 -0.61924429  1.384093132  2.105294105  0.44256679  1.11567925  1.70342419
#> 67  0.45119769  0.928279542  0.624233078 -0.33337714  1.14419836  1.67898783
#> 68  1.60586942  1.316623500  1.862004837  2.20678683  1.02960004  2.10339785
#> 69  2.03823465  0.654320732  1.277032722  2.29525044  2.53412814  1.51712787
#> 70 -0.20250667  0.213155497  1.337860721  0.43486175  1.61599417  1.39528062
#> 71  0.82448322  0.180353110 -1.430270245 -0.30064557  0.56909209  1.12032389
#> 72  1.70980177  1.371194700  2.406439541 -0.17450618  1.80849261 -0.31276376
#> 73  0.46912511  0.207248041  0.112389484  0.33087409  2.31663838  1.21793320
#> 74  0.86465865  0.654477007  1.441556058  1.02219381  2.45161737  1.13355408
#> 75  0.91113580  0.882585915  0.450350377  0.01045436  2.22567289  1.21228962
#> 76  0.87926484  0.283824915  0.168281256  2.06337540  1.27932859 -1.51274244
#> 77  2.42907726 -0.003295331  0.245012886  1.62183910  0.66378049  2.05924828
#> 78  0.69938455  3.364062893  1.201520525  1.56605575  0.01440620  0.86853876
#> 79  1.34113381  1.903969928  0.363036108  1.90006928  0.45562589  2.54274721
#> 80  2.81163825  2.658749238  0.323114031  0.77066651  1.63613206  1.21669940
#>       Series 7    Series 8    Series 9   Series 10
#>  1  0.85505494  3.91371591  0.98942111  0.19428752
#>  2  0.72848170 -0.60962376  1.88108433  1.63362545
#>  3  2.25262607  0.01751107 -1.67749574  2.21481436
#>  4 -0.78006982  0.48933195  1.79620347  0.29995128
#>  5  2.92579293  0.38117873  0.48538920  1.09179893
#>  6  1.61582847 -0.13977187 -2.03856976  0.22567676
#>  7  1.58505899  0.46368934  1.77696369  1.90747895
#>  8 -0.36244767  1.86970373 -0.57831478 -1.04241291
#>  9 -0.16788843  2.27819188  1.68408009  1.69154955
#> 10  1.78825532  0.17670473  0.96750101 -0.06905579
#> 11  0.79638630  1.82355658  2.16444998 -0.46970765
#> 12  1.17175879  0.68717926  1.18557708  2.66229690
#> 13  0.97827039  1.21522900 -0.11277775  0.82153004
#> 14  1.56374507  0.65963727  1.80440348  1.28718226
#> 15  0.76321697 -0.38048976  1.20848684  0.91861461
#> 16  1.05391798  2.50321203  1.35235972  1.57563848
#> 17  0.31255651  1.76727933  0.46222042  2.39190256
#> 18  0.17681827  1.09670182  0.54365509  0.73019364
#> 19  0.44079819 -0.54899892 -1.00079923  1.54502709
#> 20  0.91030261  1.99025535  2.29071377  0.22455937
#> 21 -0.31239889  0.11716066  1.75785227  2.04599941
#> 22  1.18857317  2.11598653  1.10785113  2.35656135
#> 23  0.09522516 -1.09890000  1.59356777 -0.61276485
#> 24 -0.34638129  2.05279721  1.11149809  1.90211785
#> 25  0.68182384  1.33247519  0.28028114  1.73332404
#> 26  0.45319854 -0.11823245  1.70003447  2.54327731
#> 27  1.16360222  2.93411500  2.35354562  0.58515503
#> 28  0.01356092  0.23022349  2.13331046  1.26926129
#> 29  1.66865272  2.02038894  2.11074333  1.58435749
#> 30  0.17115411  0.78157083  0.89827863  0.68346651
#> 31  1.66570148  0.87255867  0.52996908  0.21212636
#> 32 -0.89634956  0.76042865 -1.07028857  0.61946298
#> 33  2.25551925 -0.07730710  2.05413101  0.93412275
#> 34  0.55883657 -0.78824814  1.22819036 -0.09929003
#> 35  2.80619254 -0.18593829 -0.70573457 -0.56296418
#> 36  0.40800620  1.09284674 -0.15669929 -0.16340657
#> 37  1.88950391  0.02285816  1.25275921  1.95261152
#> 38  1.18467150  1.07814076  1.46123347  1.89518638
#> 39  3.40058614  1.64947199  1.23982474  1.37366894
#> 40 -0.60291203  2.96577802  1.27435099  0.36342315
#> 41  1.79416950 -0.08485201  1.55414240  0.74210636
#> 42  0.48778065  0.25138833  2.11973175  0.63214593
#> 43 -0.07866404 -1.60315888  1.58706314  3.53679844
#> 44  1.07005877  0.66287890  3.43790459  1.91911025
#> 45  0.92795131  0.53912555  0.01947789  0.84162627
#> 46  1.02028741  3.38797802  0.76937009  1.12088276
#> 47  0.88452044  1.52196707  1.00042240 -0.45226374
#> 48 -0.20934950  1.03698765  0.33467700  1.29205312
#> 49 -0.10762520 -0.63649277  0.88391871  0.09264714
#> 50  1.77776598  0.50837405  0.80914416  0.37013699
#> 51  1.29708561  1.89786074  1.37809278  0.83128843
#> 52 -1.23586938  1.70222734  0.21292087  0.35790268
#> 53  0.73057350 -1.34641829  0.34107469  0.25264315
#> 54  1.80402475  0.90354444  2.22629344  0.10179832
#> 55 -0.09518811  1.28584865  1.98574531  2.95447612
#> 56  0.02116943  2.27015607  2.90747707 -2.51178876
#> 57  0.75269527 -0.79585602  0.47469585  2.60194143
#> 58  1.00735801  0.47228407  1.57201134  0.43827222
#> 59  0.54823456  1.59725987  1.45826381  2.05537311
#> 60 -0.03348150  3.75767673  1.29687349  0.87961405
#> 61  2.55854567  2.52794529  0.04065551  0.33866323
#> 62  1.54165973  2.95546755  1.29645417 -0.33659460
#> 63  0.17645766  0.33503500  1.05424069  1.35096380
#> 64  2.07253001 -1.44750391 -0.71805934  0.73086714
#> 65 -0.46561815 -0.21332951  2.95746011 -0.15953117
#> 66  0.75260718  1.39157383 -0.32167992  1.59336963
#> 67  1.15098622  1.21169905 -0.55743786 -0.19719721
#> 68  2.43533756 -0.19817043  2.46791159  0.81850573
#> 69  2.86002736  0.47833999  0.96273726 -0.01392764
#> 70  0.78241759  0.90047440  1.10788248  1.43907960
#> 71  0.15803445  1.16385385  1.77717612  2.55008375
#> 72  1.27653493 -0.78445452  0.07902372 -0.05446601
#> 73  0.19517838  0.47564812  2.38264151 -0.29034513
#> 74  0.32338238 -0.31142110  2.29459293  0.82536649
#> 75  1.94666605  0.83778725  1.86281467  0.49043168
#> 76  1.38864955 -0.46483909  2.22605321  0.40146523
#> 77  1.70864246  0.14608079  1.36502343  0.02282874
#> 78  1.69960394  1.60676966  0.73658556  1.92849899
#> 79  1.52521772  1.40285543  1.62074063  3.22382898
#> 80  0.67784463  1.25943923  1.23617040  0.16295846
#> 
#> $Actual_Test
#>  [1]  0.66603289  0.56441285  0.46899029 -1.80083548 -0.88404006 -0.10691764
#>  [7]  0.46453925 -0.74730054  1.03602601  0.46495443  0.27270493  1.55359254
#> [13] -1.03640646  0.43625003  0.07974220  1.60076251 -0.84577204 -1.62540401
#> [19] -0.13368028  0.01825332
#> 
#> $Forecasts_Test
#>         Series 1   Series 2    Series 3   Series 4    Series 5     Series 6
#>  [1,]  1.0396779 -0.1547477  0.94766255  0.6166052  1.73137508  1.749505054
#>  [2,]  1.1105157  1.7950136  1.14346187  1.6025761  0.54149575  1.366898378
#>  [3,]  0.7637506 -1.0685581 -0.08246236  0.9373998  1.67573909  1.070557906
#>  [4,] -0.7623823 -0.1847903  0.27940594  0.3387729  1.48134055  2.672766891
#>  [5,]  0.1288254 -0.6132547  0.42300595  0.7817999  1.87164060 -0.002845736
#>  [6,]  1.4834304  1.9101009  0.23729651  0.1702420 -0.65184283  0.299514286
#>  [7,]  0.2179225 -0.7385002  1.59892196  0.9275215  1.33491255  1.222422616
#>  [8,] -1.2733756  0.2470395 -0.06904203  1.5575982  1.79522903  1.086031224
#>  [9,]  0.5590132  0.8532531  1.14801652  1.8710160  1.18263895  2.365382178
#> [10,]  2.4342722  1.6043699  0.32728917  3.2087845 -1.60719862  2.182661131
#> [11,]  1.3154555  1.1059816  1.49144813  0.8274347  0.37433506 -0.191384046
#> [12,]  0.1531057  1.3636265  1.41103370  3.3807557  0.07139792  0.243370008
#> [13,]  0.6979055 -1.2948465  1.18207505  1.3422611  0.74328247  0.565966297
#> [14,] -0.1842124 -0.3674118  0.70430033 -0.4685462  1.93460094  2.451656541
#> [15,]  1.1265487  0.4436025  0.47320421  0.6035392 -0.43030460 -1.053324277
#> [16,]  1.4231193  0.5327091  1.82319335  0.6823043  2.44524355 -0.726470671
#> [17,]  0.8334510  1.9400414  0.11962566  0.5335695  1.35620516  0.469767247
#> [18,] -0.1161532  3.0370221  2.60440410  1.3173283  1.54267112  0.097174697
#> [19,]  0.9343619  2.1490702  0.43110564  1.0497441  1.35252560  2.564368980
#> [20,]  1.0706427  1.6612350  0.72623504  0.8931920 -0.25242527 -0.215037302
#>         Series 7   Series 8     Series 9  Series 10
#>  [1,]  1.7309048  1.8601615  2.100889241 -0.3009883
#>  [2,]  0.1200523  2.5844173  1.110309145 -0.2868684
#>  [3,]  0.7150072  2.5345918  0.672476901  2.0869902
#>  [4,]  1.2491122  1.0006277  2.409821716  0.2162513
#>  [5,]  1.3617060  0.7439716  1.619293386  1.6300958
#>  [6,]  1.2758282  1.1639578 -0.124764889  0.1194568
#>  [7,] -0.9108016  0.8437130  2.010754374  2.1770847
#>  [8,]  0.4594004  0.7566662  1.351167205 -1.5815672
#>  [9,]  1.7937665  1.9191180  1.577288619  0.8546950
#> [10,]  1.2798317 -1.0798848  1.212641960  1.1435343
#> [11,]  1.6575819  2.4445059  0.009767569  0.4094421
#> [12,]  1.0331844  0.7894211 -1.366822278 -0.3941232
#> [13,]  0.9895685  1.8263824 -0.530007326  0.3747736
#> [14,]  1.5624163  0.7254844  0.519938649  1.2070607
#> [15,]  1.4844774  1.2411993  1.255845161  1.9141898
#> [16,]  1.3055481  1.5785884 -1.072573471  2.2720648
#> [17,]  1.3932659  2.1598189  1.206692008  1.4849038
#> [18,]  2.6023967  1.9298885  2.417626146  1.8623553
#> [19,]  0.8235486  0.9438242  3.012584580  0.9878838
#> [20,]  0.7109637 -0.3230244  0.623181569  1.4882737
#> 
#> $nmodels
#> [1] 10
#> 
#> $modelnames
#>  [1] "Series 1"  "Series 2"  "Series 3"  "Series 4"  "Series 5"  "Series 6" 
#>  [7] "Series 7"  "Series 8"  "Series 9"  "Series 10"
#> 
#> attr(,"class")
#> [1] "foreccomb"

## Example with forecast models being stored in rows:
preds_row <- matrix(rnorm(1000, 1), 10, 100)
train_p_row <- preds_row[,1:80]
foreccomb(train_o, train_p_row, byrow = TRUE)
#> $Actual_Train
#> Time Series:
#> Start = 1 
#> End = 80 
#> Frequency = 1 
#>  [1]  0.43400756 -0.60936755  1.73788479  0.17019650 -0.60997495 -0.88493843
#>  [7] -3.04292016 -0.80547635  1.48667223 -0.81349723 -0.98581235  0.32692250
#> [13] -1.14354994  1.11520398  0.16205873 -1.45973711  0.88362320 -0.95163208
#> [19]  0.48773017  0.61218570 -0.66860373 -0.31831967 -1.16119564  0.60003441
#> [25] -1.49167669 -1.05530366  0.11894684 -0.25818750 -0.84677252  2.07398325
#> [31] -0.60831152  0.78335902  0.45210259 -1.05652325 -0.30095115  0.20361402
#> [37] -1.36169564  0.11097343 -1.11684970  1.66399814  0.06007734  1.35932805
#> [43]  1.13993162  1.04056666  1.44447337 -1.09509360 -0.20536797 -0.22885541
#> [49] -1.06064057 -1.42084892  1.61972024  0.05055291 -0.73095552 -0.02253699
#> [55]  1.22242238 -1.30657291  0.64185024 -0.20405723  0.45268331 -0.81430453
#> [61] -1.11999100  0.61961511 -0.18541009  0.25505837 -0.11288202  0.10624340
#> [67]  1.27289077 -0.65136265  0.05857765  0.54267087  1.28711792 -1.22413234
#> [73] -0.26025788  1.88077852  0.97105882  0.11126840 -1.57443516  1.30479528
#> [79]  0.77987831 -0.50060114
#> 
#> $Forecasts_Train
#> Time Series:
#> Start = 1 
#> End = 80 
#> Frequency = 1 
#>        Series 1     Series 2    Series 3    Series 4   Series 5    Series 6
#>  1 -0.837702785  3.000330781  0.89313766  0.35090998  0.7320358  1.38302018
#>  2  0.914264296  1.809564202  1.29733488  1.28402463  1.2359110  0.43001338
#>  3 -0.040251790  0.760957174  1.16860989 -0.46392427  2.1892685 -0.12381773
#>  4  0.063430020  2.258974542  1.74098349 -0.22235621  2.0854444  0.64700229
#>  5  0.840811055  0.842509224  1.75112571  1.33479941  1.8734980  0.38111910
#>  6  0.214439262  0.469846023 -0.11472579  0.40691389  0.4409599  3.49166996
#>  7  0.898865192  1.000104702  1.18819518  0.89022437  1.4390396  2.82967292
#>  8  2.380110745 -0.377320108  1.57446702  1.98128990 -0.5659628  0.28052929
#>  9  1.569564267  1.235262926 -1.39363244  2.66343426  1.9953003  0.10536378
#> 10  0.427942089  0.653793011  0.72373132 -0.10895857  1.0787874  0.53548772
#> 11  1.799639758 -0.542072849  0.91431495 -0.39851668  2.0923720  2.51479450
#> 12  1.889168353 -0.442915327  1.51447120  1.86435427 -0.1808132  0.07510796
#> 13  1.538902931  1.200429107  1.29645993  2.30923400  1.5773714  2.53018510
#> 14  2.451850880  0.387116392  1.24324282  0.54058303  1.7748231  1.30952115
#> 15  0.563970757  0.673351307  1.56943431  1.98468992  0.6064750 -0.58003913
#> 16  1.275490974  1.199735646  0.08580380  0.73314098  1.4955175  1.49582555
#> 17  2.146119543  0.703103271  1.93805977  3.31165656 -0.7138963  0.32908818
#> 18  0.508808542  0.482292506  2.40984170  1.61703833  0.8023575  1.67937275
#> 19  0.804446974  1.783480183  1.85047014  1.68276818  0.9251551  3.12265668
#> 20  1.049691777  0.226847378  1.54731265  1.67913356  2.8250013 -0.55442714
#> 21  2.340616092  2.126324275  3.41943519  1.98298597  1.1828726  1.76312554
#> 22  1.735648407  1.194024198  0.80763679  2.85712064 -0.1297916  3.12051824
#> 23  2.298093814  0.636986427  2.76564862  0.80901225  2.5462321  1.79929111
#> 24  2.536694937  2.801564052  0.17532488  0.41922051  0.6311241 -0.12841904
#> 25  0.777960605 -0.291065541  1.94958189  0.79287325  0.3864623  1.29981869
#> 26 -1.092997956  1.199002753  1.39014858  0.82193394  2.0145364  0.51351204
#> 27  0.522634680  0.737365409 -0.27167065  0.30380718  0.9986532  1.53255592
#> 28  3.006719102  2.413031903 -2.47084556  0.33619914  0.6080248 -0.22710759
#> 29  2.108654626  0.670764373  2.09144009  1.40683470  0.6586005  1.31646764
#> 30  0.473975300 -0.398391569  0.25815086  2.51523515  1.5866754 -1.51390126
#> 31 -0.125142771  1.722023450 -0.77100799  0.58553981  2.4958249  1.66954860
#> 32  1.555239994 -0.819463276  1.98592360  1.06821751  0.2868250  0.71562001
#> 33 -0.858532750  0.826207157  1.49296992  1.68433941 -0.5288841  1.60905190
#> 34 -0.005343145  2.220887992  1.63731347  0.01026635  1.1170558  0.57396403
#> 35  0.462964493  1.846334634  0.93002561 -0.31793632  0.9900276  0.66071598
#> 36  1.207092979  0.002242728 -0.81126413  2.49533791  1.1104194 -0.86223563
#> 37  0.460584517  3.450411779  3.07802117  0.59284105 -0.5680777  3.20556231
#> 38  0.751626891 -0.094280961  1.19713150  0.58130872  2.3089135  1.62009943
#> 39  0.040490925  0.767551324  0.05773978  1.53391735  0.8053528  0.71685019
#> 40  2.638193695  2.044793136 -0.20814581 -0.21139366  0.9373594  0.32294845
#> 41  2.373965013  0.091412189  0.80035625  1.41361482  1.6910769 -0.62549106
#> 42 -0.274456641 -0.741579489  0.63229171  0.93121473  1.1453926 -0.10003195
#> 43  3.175545444  1.336414879 -0.37875006  0.35543591  0.4121263  2.32202555
#> 44  0.894040334  1.675473834  1.03934044  1.19744419  3.3806959  1.39612803
#> 45  1.066500556  0.465351178  0.16807972  0.84756193  2.4918110  1.29851275
#> 46  0.476163266  0.447599681  0.93151311 -0.22817644  0.6217066  1.97993452
#> 47  1.643860304  0.852120337  0.83463899  0.77565835  0.9694884 -0.94790639
#> 48  0.579474916  1.890285093  1.37376205  2.58270033  0.3411956  1.54699461
#> 49  1.386583318  0.678377357  2.42253096  0.49978315  0.6807953  0.07089804
#> 50  1.727642025  0.107426081  1.35375641  0.08036834  1.5587312  2.19597721
#> 51  1.245535788  3.223404059  0.36612045  0.01422418  1.3916369  1.15332454
#> 52 -0.615924766  1.573628082  1.05240010  0.09147813  1.8487894  1.85032434
#> 53  1.128680917  2.634732069 -0.22826311  1.19140216  1.2543070  0.27067843
#> 54 -0.954157535  2.226114159 -0.24287578  0.32029888  1.9965836  0.73089147
#> 55  0.232926635  0.425973468  2.09906259  1.81910628  0.9751429 -0.05300305
#> 56 -0.707208094  1.264277417 -0.22263442  0.52395737  1.6362050  2.87222998
#> 57  2.471144655  1.466797716  0.96069250  0.86833851  1.8316539  0.44829346
#> 58  0.915101997 -0.945410793  0.97720098  0.45363423  2.5507808  1.70674020
#> 59  0.651173179 -0.201360930  1.52249010  0.49249132  1.8893521  0.27207306
#> 60 -0.026964976 -0.704693125  2.26945446  0.99587356  1.3668259  1.04966397
#> 61  0.277616722  1.511276568  0.63241013  0.13835242  1.1109137 -1.18088236
#> 62  2.079571185  2.178854593  0.67494303  0.96625516  0.1514712  2.41745089
#> 63  1.072970638  1.810384696  1.14230315  2.83077867  1.8920438  0.85661135
#> 64  0.574972691  0.199795939 -0.39958903  1.69202149  1.8743006 -0.86271657
#> 65  1.315410596  0.827197883  1.44505331  1.25168735  1.1535468  0.96836676
#> 66  0.083607269  0.380007226  1.10481064  1.75622355  2.0439797  0.96293788
#> 67 -0.158893720 -0.738756803  1.17526141  0.97881123  1.2199783  0.33661535
#> 68  0.551513213  0.924588194  2.96957688  1.50140257  1.5067497  1.21925532
#> 69  3.760429317  3.629976723  2.96591913  1.48201078  2.4390532 -0.85432448
#> 70  0.486271484  0.487152135  0.81185858  0.44468480  0.5068125  1.25122117
#> 71  2.374443805  1.729525746  0.95514083  0.41138123  0.7160380  3.08047961
#> 72  1.303887534  1.612853439  1.32735071  0.64075957 -0.7674189  1.19839414
#> 73  1.587524267  1.406428803  1.07632661  0.66736583  2.1112760  1.58714236
#> 74 -0.319155881  1.103609581  1.28542167  0.54042390  1.3664568  0.40224750
#> 75  0.757379950  1.971660232  1.80501705  0.55947555  1.0142412  2.67400581
#> 76 -1.176926252  1.575060051  0.72885808  1.40554179 -0.2936466  0.01661553
#> 77  1.142417311  0.955754169  1.43110182  0.39622514  0.2888570  0.69756749
#> 78  1.917986110  0.376709249 -0.49892270  1.37027709  1.1809620  1.34224772
#> 79 -1.157738372  1.811427933  2.47995957  0.65186566  1.1665793  0.27090766
#> 80 -0.579460643  2.130925132  0.57667097 -0.15265434  0.8912617  0.70963916
#>        Series 7     Series 8    Series 9    Series 10
#>  1  2.387140740  1.327628241  0.40859550  0.885783299
#>  2  0.559324410  2.362174086  2.22747119 -0.085314982
#>  3  0.093983523 -0.203428016  0.81529442  1.115688875
#>  4 -0.995209655  0.832362494  1.74176069  0.567788783
#>  5  1.116719351  0.843067344  2.74551080  0.871986888
#>  6  0.465117825  2.197205641 -0.65818614  1.812546155
#>  7  1.312064298 -0.586642076  3.22783161 -0.769271366
#>  8  1.366104865  0.212209795  1.96023321 -0.671685121
#>  9  2.555444400  0.438414855  3.07219712 -0.822873634
#> 10  0.637368937  0.781549790  1.82870440  0.867008192
#> 11  0.858409855  1.739454549  2.78528580  2.615528798
#> 12  2.356249359  1.105393749  0.51202424  0.367675147
#> 13  0.872064810  1.209757441  1.77000996  0.487779499
#> 14 -0.229089560 -1.300460065 -0.25124957  1.628015018
#> 15  0.091093638 -0.717194977  0.87877241  0.513556711
#> 16  2.277807896  0.010819364  1.17682360  0.083557350
#> 17 -0.637235616  0.215593346  1.07461213  1.607766543
#> 18  1.176533997  0.195405031  0.63873637  1.214344016
#> 19  2.314516217  0.432078841  0.44401318 -1.016917751
#> 20 -0.343634006  1.346816154 -0.46446019  0.008146764
#> 21  1.442877591  2.229839858 -0.25839089  2.893237195
#> 22  2.924161279 -0.015371991  1.57224441  1.131868579
#> 23  0.935047583  0.705459942 -0.72833124 -0.621022061
#> 24  3.261343653  1.565525000  0.06604507  0.728799968
#> 25  1.007812963 -1.522965190  0.61278611  2.483481507
#> 26 -0.670159899  0.506674891  2.06504175  3.081212762
#> 27  0.105853694 -1.372186110  0.46369096  1.769943105
#> 28  1.989797591  1.869319300  0.15459201  1.662956724
#> 29  1.229693885  1.538522928  1.50750041  3.167402517
#> 30  1.980969836  2.089173599  1.36651163  1.564420081
#> 31  0.870482521  0.410463018  0.67699569  0.515963704
#> 32 -0.747471970  0.342161998  2.19717870  1.824200961
#> 33  1.286931647 -0.002438681  1.46523842  1.490526439
#> 34  0.239713000  0.295749067  0.65406801  2.117873567
#> 35  0.960138418  0.336470934  1.91850042  0.859691252
#> 36  0.346783321  0.304645669  2.13427059 -0.645552826
#> 37  2.743279070  2.442279354  0.42073554  1.938955140
#> 38  0.638365728  0.907642879  1.66860111  1.336199823
#> 39 -0.001334567  2.689473380 -0.22046183  0.178834990
#> 40  1.163866922  0.741599997  1.03978988  0.635158239
#> 41 -0.979945973  1.868445849 -0.01689456  1.811189373
#> 42  2.214785257  0.853684104  1.28595931 -0.894925329
#> 43 -2.095255644  1.142171816 -1.35332261  1.653791698
#> 44 -0.269058807  0.328132121  1.19396654  0.611973847
#> 45  1.063559267  1.406568360  0.71775441  2.533975077
#> 46  0.971309045  1.438797788  2.58196926  0.695510591
#> 47  0.167550244  0.851608336  0.24752769  2.122189863
#> 48  0.966025459  0.180520922 -0.75220812 -0.048107173
#> 49  1.002487332  1.177080079  0.79348990 -1.299903795
#> 50  0.452871850  1.391178268  2.21122673  0.551149196
#> 51  1.142145293  1.733478651  2.62216023  0.250323077
#> 52  0.829425578  0.303004914  2.65605629  0.853482825
#> 53  1.284944958  1.995456779  0.46969673  0.859782538
#> 54  0.368344784  2.244872428  1.92466843  0.202783497
#> 55  0.804496080  0.145464886 -0.59631701 -0.514402502
#> 56  1.270456983  1.237759084  3.35746610 -0.468583608
#> 57  0.596336028  0.781245253  1.87633844  1.930101124
#> 58  1.017322350  2.715480692 -0.18643404  2.537826526
#> 59  1.781268776  1.750613099 -0.03004550  0.252111629
#> 60  0.536133903  0.450700358  0.02157306  1.895538654
#> 61  0.650297520  1.922812437  3.07737970  2.092350115
#> 62  1.177280111  1.643863045  0.67020781  1.462062875
#> 63  2.075999082  0.571505511  1.99445586  1.750201339
#> 64  1.577993390  2.354862665  2.68197496  1.008351697
#> 65  1.657476712 -0.725473120  0.15576902  0.767113182
#> 66  0.998991931  0.387183219  1.77600155  0.697368267
#> 67  0.662212335  2.943560049  2.21323096 -0.083961539
#> 68  0.859352274  0.819906280  0.26456502  3.056613843
#> 69  0.196632890 -0.565495133  0.21929804  1.221388756
#> 70  1.131166702  0.449516928  1.33589593  0.903065791
#> 71  2.642507047  0.795293707  2.80217562  0.912319461
#> 72  2.211839172  0.438301610  0.20332609 -0.605954849
#> 73 -0.320553340  0.887250834  1.05026921 -0.328780822
#> 74  1.071967179  0.069647204  0.86228230  1.563454040
#> 75 -0.384706513  2.337177910  0.41453840  2.759850299
#> 76  1.862345799  1.384911572  0.65961871  0.849505254
#> 77  1.634267045  0.849242618  1.40107176 -0.376583516
#> 78  1.578600841 -1.285900030  1.64805784  0.130296654
#> 79  2.344947382  2.164345014  1.73134247  1.458003727
#> 80  0.555618970 -0.551155833  0.18086260  0.494641882
#> 
#> $nmodels
#> [1] 10
#> 
#> $modelnames
#>  [1] "Series 1"  "Series 2"  "Series 3"  "Series 4"  "Series 5"  "Series 6" 
#>  [7] "Series 7"  "Series 8"  "Series 9"  "Series 10"
#> 
#> attr(,"class")
#> [1] "foreccomb"

## Example with NA imputation:
train_p_na <- train_p
train_p_na[2,3] <- NA
foreccomb(train_o, train_p_na, na.impute = TRUE)
#> A subset of the individual forecasts included NA values and has been imputed.
#> $Actual_Train
#> Time Series:
#> Start = 1 
#> End = 80 
#> Frequency = 1 
#>  [1]  0.43400756 -0.60936755  1.73788479  0.17019650 -0.60997495 -0.88493843
#>  [7] -3.04292016 -0.80547635  1.48667223 -0.81349723 -0.98581235  0.32692250
#> [13] -1.14354994  1.11520398  0.16205873 -1.45973711  0.88362320 -0.95163208
#> [19]  0.48773017  0.61218570 -0.66860373 -0.31831967 -1.16119564  0.60003441
#> [25] -1.49167669 -1.05530366  0.11894684 -0.25818750 -0.84677252  2.07398325
#> [31] -0.60831152  0.78335902  0.45210259 -1.05652325 -0.30095115  0.20361402
#> [37] -1.36169564  0.11097343 -1.11684970  1.66399814  0.06007734  1.35932805
#> [43]  1.13993162  1.04056666  1.44447337 -1.09509360 -0.20536797 -0.22885541
#> [49] -1.06064057 -1.42084892  1.61972024  0.05055291 -0.73095552 -0.02253699
#> [55]  1.22242238 -1.30657291  0.64185024 -0.20405723  0.45268331 -0.81430453
#> [61] -1.11999100  0.61961511 -0.18541009  0.25505837 -0.11288202  0.10624340
#> [67]  1.27289077 -0.65136265  0.05857765  0.54267087  1.28711792 -1.22413234
#> [73] -0.26025788  1.88077852  0.97105882  0.11126840 -1.57443516  1.30479528
#> [79]  0.77987831 -0.50060114
#> 
#> $Forecasts_Train
#>       Series 1     Series 2     Series 3    Series 4    Series 5    Series 6
#> 1   0.49035870  0.900280120  3.149106584  0.46437044  1.71035305  0.33958138
#> 2   1.29856014 -0.241495179  1.848869133  0.85851602  1.67950686  2.57436136
#> 3   0.28742452  0.002112943  2.049470658  0.63612821  2.27472718  0.82215308
#> 4   0.26586712  0.252073962  1.027658636  2.51242817 -0.55670766  1.28138024
#> 5   1.06403760  2.166644019  1.526688482 -0.98958234 -0.75659683 -0.28676256
#> 6   0.72273245  1.019240683 -0.005815529  0.91806524 -0.73411887  0.99314071
#> 7   0.40760472  1.401171394  3.197404454  2.31845039 -0.91714470  2.60080835
#> 8   1.69111890  1.069845467  0.702314124  1.32960310  0.14908582  0.60056549
#> 9   0.53254793 -1.205506173 -0.163425224  1.07887669  0.43436698  2.21667485
#> 10  1.55818258  1.464048908 -0.560937779  0.96632378  0.59304219  0.11642798
#> 11  0.34223086  0.895949751  1.097984141  0.57108564  2.36118225 -0.17334560
#> 12  1.90763130  0.627971660  2.329258487  0.23239814  1.48491225  1.06812522
#> 13  1.55607918  1.379200372 -0.110599691  0.84442977  3.08698121  1.17980929
#> 14 -0.80581475 -1.004890326  2.010167512  2.00865252  1.46893454  1.05667256
#> 15  0.87430724  2.115190217  2.068816561  0.33768070  2.18911369  0.79610998
#> 16  2.14699845  2.613408288 -0.187365519  2.58519311  1.71322852  0.48814835
#> 17  2.62758961  1.568510929  1.708963397  0.60726478  2.85862373  1.63591495
#> 18  1.02754292  1.534428918  0.702916655  1.84197242  2.28961667  0.59101182
#> 19 -0.80362627  2.074658756  1.503916904  0.26679451  1.08495291  0.12775184
#> 20  3.19379384  0.086029912  1.429044295  2.91702809  0.88090793  0.09030641
#> 21  1.15147619 -0.196600889  1.038899464  2.08631377  2.84641728  0.02171143
#> 22  0.11329226 -0.051354817 -0.270471957  0.75203685  1.72469559  1.06147517
#> 23 -0.52730675 -0.644431851  1.336518748  2.68951417  0.50385051  2.02049362
#> 24  1.06343685  1.340013101  0.816299130  0.31409716 -0.09552238  0.89251584
#> 25  2.44035374  1.826320050  0.250284052  0.31616172  2.33152044  0.56948658
#> 26  0.61124939  0.147818461  1.100501383  0.07936381  2.11960963 -0.16021862
#> 27  1.16547789  1.662488840 -1.054171126  2.44943900  1.36484498  1.06396381
#> 28  0.65561619  2.596515342  2.804254467  1.76861728 -0.76243445  0.28346271
#> 29  1.59548588  0.648740322  3.043544311  2.34751346  1.30873823  2.93396120
#> 30 -0.14925506  0.367000085  1.221017455 -0.01794408  0.53307285 -0.09841434
#> 31  0.20209834  2.060188650  1.416987156  1.25954334 -1.26358591  0.50231918
#> 32  0.74339088  1.864128778 -0.133568286  0.32993216  1.93793288 -0.45490069
#> 33  0.07458618 -0.300486024 -0.357276791 -0.03109610  1.21784137 -1.32189721
#> 34  1.16581417  1.215292355  0.303869420 -0.17852637  0.53966693  0.54581364
#> 35  1.86729664 -0.010173163  0.916255662 -0.03674990  0.27750348  0.71456714
#> 36  1.17487414  2.798167464 -0.603860166  1.08169121 -0.34135847  1.72351212
#> 37  1.86361750  0.551169595  0.356379728  1.39451909  1.41614559 -0.27472929
#> 38  1.58464519  1.532836334  1.766030845 -0.09285101  2.04205620  1.40001639
#> 39  0.66919058  1.300832981 -0.568302346  1.05622671  0.79503770  1.49554501
#> 40  1.30578017  0.541273824  1.289982800  1.41616058  1.18654062  1.27708127
#> 41  0.96753762 -0.241957197  1.203216841 -0.50472343 -0.03517353  1.73085437
#> 42  3.84688023  3.978722899  0.282846256 -0.52705481  0.43860180  1.30048110
#> 43  1.49219553  0.551026149  0.502466673  1.70898499  2.21217630 -0.42535649
#> 44  1.43157315  0.822865021  1.408204053  0.27839911  1.44747061 -0.26097392
#> 45  1.30864534  2.136997979  1.382958103  2.66112171 -0.75693836 -0.10904965
#> 46  1.07332106  1.658319788  0.001486564  1.17064527  0.83317998  1.28915016
#> 47  1.83151376  1.097060723  1.910345038  0.42665777  0.05433657  0.40084826
#> 48  1.76206608  2.692937337  2.930613267  1.34124462  0.03187431  0.11171237
#> 49  0.86774028 -0.526270161  0.960831119 -0.03512074  1.29994442  0.62686894
#> 50  1.33256468  1.538898972  1.198609355  0.45814060  1.12740128  1.06682605
#> 51 -0.47332243 -0.134711092  0.658499779  2.10389238  0.28127889  2.20363134
#> 52  0.89825061  1.692757571  0.160376162  0.72750150 -0.53798220  0.85462936
#> 53 -0.71793245  0.209596475  2.715632975  2.07031297  2.22030106  1.84828597
#> 54  0.24569425  1.039674956  0.852893054  0.19913196  1.13654499  1.30626366
#> 55  0.40246995  1.554239163  0.794617003  0.70033910  0.27802854  0.55639267
#> 56  1.45619783  1.268076364  1.257291618 -0.41035644 -0.18956674  2.40499675
#> 57 -0.12867484  3.076600798  0.718096693  0.58409047  0.43987850  2.56109440
#> 58  2.39187213  0.953676226  0.437945903  2.13261053  0.96516226  0.89035456
#> 59  0.01381174  1.126990621  2.438027039  0.02707141  0.02924701 -0.28576661
#> 60  1.24736147  0.078583502  0.168934646  2.31967808  0.31784723  0.82667061
#> 61  0.52179143 -0.723432837  0.722708657  2.12845772 -0.65727594  1.07993430
#> 62  0.47616934  2.304859390  0.305688670  2.44005492  2.35437176  2.19821615
#> 63  1.06647309  0.999234408  2.425531551  0.37943573 -0.34087915  2.41264420
#> 64  2.99995832  1.165681695  0.517560044  0.76812127  0.14978533  1.13943035
#> 65  0.60378299  0.941669426  1.114673583  1.60123284 -0.46883665  2.18068910
#> 66 -0.61924429  1.384093132  2.105294105  0.44256679  1.11567925  1.70342419
#> 67  0.45119769  0.928279542  0.624233078 -0.33337714  1.14419836  1.67898783
#> 68  1.60586942  1.316623500  1.862004837  2.20678683  1.02960004  2.10339785
#> 69  2.03823465  0.654320732  1.277032722  2.29525044  2.53412814  1.51712787
#> 70 -0.20250667  0.213155497  1.337860721  0.43486175  1.61599417  1.39528062
#> 71  0.82448322  0.180353110 -1.430270245 -0.30064557  0.56909209  1.12032389
#> 72  1.70980177  1.371194700  2.406439541 -0.17450618  1.80849261 -0.31276376
#> 73  0.46912511  0.207248041  0.112389484  0.33087409  2.31663838  1.21793320
#> 74  0.86465865  0.654477007  1.441556058  1.02219381  2.45161737  1.13355408
#> 75  0.91113580  0.882585915  0.450350377  0.01045436  2.22567289  1.21228962
#> 76  0.87926484  0.283824915  0.168281256  2.06337540  1.27932859 -1.51274244
#> 77  2.42907726 -0.003295331  0.245012886  1.62183910  0.66378049  2.05924828
#> 78  0.69938455  3.364062893  1.201520525  1.56605575  0.01440620  0.86853876
#> 79  1.34113381  1.903969928  0.363036108  1.90006928  0.45562589  2.54274721
#> 80  2.81163825  2.658749238  0.323114031  0.77066651  1.63613206  1.21669940
#>       Series 7    Series 8    Series 9   Series 10
#> 1   0.85505494  3.91371591  0.98942111  0.19428752
#> 2   0.72848170 -0.60962376  1.88108433  1.63362545
#> 3   2.25262607  0.01751107 -1.67749574  2.21481436
#> 4  -0.78006982  0.48933195  1.79620347  0.29995128
#> 5   2.92579293  0.38117873  0.48538920  1.09179893
#> 6   1.61582847 -0.13977187 -2.03856976  0.22567676
#> 7   1.58505899  0.46368934  1.77696369  1.90747895
#> 8  -0.36244767  1.86970373 -0.57831478 -1.04241291
#> 9  -0.16788843  2.27819188  1.68408009  1.69154955
#> 10  1.78825532  0.17670473  0.96750101 -0.06905579
#> 11  0.79638630  1.82355658  2.16444998 -0.46970765
#> 12  1.17175879  0.68717926  1.18557708  2.66229690
#> 13  0.97827039  1.21522900 -0.11277775  0.82153004
#> 14  1.56374507  0.65963727  1.80440348  1.28718226
#> 15  0.76321697 -0.38048976  1.20848684  0.91861461
#> 16  1.05391798  2.50321203  1.35235972  1.57563848
#> 17  0.31255651  1.76727933  0.46222042  2.39190256
#> 18  0.17681827  1.09670182  0.54365509  0.73019364
#> 19  0.44079819 -0.54899892 -1.00079923  1.54502709
#> 20  0.91030261  1.99025535  2.29071377  0.22455937
#> 21 -0.31239889  0.11716066  1.75785227  2.04599941
#> 22  1.18857317  2.11598653  1.10785113  2.35656135
#> 23  0.09522516 -1.09890000  1.59356777 -0.61276485
#> 24 -0.34638129  2.05279721  1.11149809  1.90211785
#> 25  0.68182384  1.33247519  0.28028114  1.73332404
#> 26  0.45319854 -0.11823245  1.70003447  2.54327731
#> 27  1.16360222  2.93411500  2.35354562  0.58515503
#> 28  0.01356092  0.23022349  2.13331046  1.26926129
#> 29  1.66865272  2.02038894  2.11074333  1.58435749
#> 30  0.17115411  0.78157083  0.89827863  0.68346651
#> 31  1.66570148  0.87255867  0.52996908  0.21212636
#> 32 -0.89634956  0.76042865 -1.07028857  0.61946298
#> 33  2.25551925 -0.07730710  2.05413101  0.93412275
#> 34  0.55883657 -0.78824814  1.22819036 -0.09929003
#> 35  2.80619254 -0.18593829 -0.70573457 -0.56296418
#> 36  0.40800620  1.09284674 -0.15669929 -0.16340657
#> 37  1.88950391  0.02285816  1.25275921  1.95261152
#> 38  1.18467150  1.07814076  1.46123347  1.89518638
#> 39  3.40058614  1.64947199  1.23982474  1.37366894
#> 40 -0.60291203  2.96577802  1.27435099  0.36342315
#> 41  1.79416950 -0.08485201  1.55414240  0.74210636
#> 42  0.48778065  0.25138833  2.11973175  0.63214593
#> 43 -0.07866404 -1.60315888  1.58706314  3.53679844
#> 44  1.07005877  0.66287890  3.43790459  1.91911025
#> 45  0.92795131  0.53912555  0.01947789  0.84162627
#> 46  1.02028741  3.38797802  0.76937009  1.12088276
#> 47  0.88452044  1.52196707  1.00042240 -0.45226374
#> 48 -0.20934950  1.03698765  0.33467700  1.29205312
#> 49 -0.10762520 -0.63649277  0.88391871  0.09264714
#> 50  1.77776598  0.50837405  0.80914416  0.37013699
#> 51  1.29708561  1.89786074  1.37809278  0.83128843
#> 52 -1.23586938  1.70222734  0.21292087  0.35790268
#> 53  0.73057350 -1.34641829  0.34107469  0.25264315
#> 54  1.80402475  0.90354444  2.22629344  0.10179832
#> 55 -0.09518811  1.28584865  1.98574531  2.95447612
#> 56  0.02116943  2.27015607  2.90747707 -2.51178876
#> 57  0.75269527 -0.79585602  0.47469585  2.60194143
#> 58  1.00735801  0.47228407  1.57201134  0.43827222
#> 59  0.54823456  1.59725987  1.45826381  2.05537311
#> 60 -0.03348150  3.75767673  1.29687349  0.87961405
#> 61  2.55854567  2.52794529  0.04065551  0.33866323
#> 62  1.54165973  2.95546755  1.29645417 -0.33659460
#> 63  0.17645766  0.33503500  1.05424069  1.35096380
#> 64  2.07253001 -1.44750391 -0.71805934  0.73086714
#> 65 -0.46561815 -0.21332951  2.95746011 -0.15953117
#> 66  0.75260718  1.39157383 -0.32167992  1.59336963
#> 67  1.15098622  1.21169905 -0.55743786 -0.19719721
#> 68  2.43533756 -0.19817043  2.46791159  0.81850573
#> 69  2.86002736  0.47833999  0.96273726 -0.01392764
#> 70  0.78241759  0.90047440  1.10788248  1.43907960
#> 71  0.15803445  1.16385385  1.77717612  2.55008375
#> 72  1.27653493 -0.78445452  0.07902372 -0.05446601
#> 73  0.19517838  0.47564812  2.38264151 -0.29034513
#> 74  0.32338238 -0.31142110  2.29459293  0.82536649
#> 75  1.94666605  0.83778725  1.86281467  0.49043168
#> 76  1.38864955 -0.46483909  2.22605321  0.40146523
#> 77  1.70864246  0.14608079  1.36502343  0.02282874
#> 78  1.69960394  1.60676966  0.73658556  1.92849899
#> 79  1.52521772  1.40285543  1.62074063  3.22382898
#> 80  0.67784463  1.25943923  1.23617040  0.16295846
#> 
#> $nmodels
#> [1] 10
#> 
#> $modelnames
#>  [1] "Series 1"  "Series 2"  "Series 3"  "Series 4"  "Series 5"  "Series 6" 
#>  [7] "Series 7"  "Series 8"  "Series 9"  "Series 10"
#> 
#> attr(,"class")
#> [1] "foreccomb"

## Example with perfect collinearity:
train_p[,2] <- 0.8*train_p[,1] + 0.4*train_p[,8]
foreccomb(train_o, train_p, criterion="RMSE")
#> Training set prediction matrix is not full rank. Algorithm to remove linearly dependent models started.
#> The input matrix is not full rank. The indices of the linearly dependent models are: 1, 2, 8
#> Of these models, model 2 had the highest RMSE and was removed.
#> Checking if the revised matrix is full rank.
#> The revised matrix is now full rank.
#> $Actual_Train
#> Time Series:
#> Start = 1 
#> End = 80 
#> Frequency = 1 
#>  [1]  0.43400756 -0.60936755  1.73788479  0.17019650 -0.60997495 -0.88493843
#>  [7] -3.04292016 -0.80547635  1.48667223 -0.81349723 -0.98581235  0.32692250
#> [13] -1.14354994  1.11520398  0.16205873 -1.45973711  0.88362320 -0.95163208
#> [19]  0.48773017  0.61218570 -0.66860373 -0.31831967 -1.16119564  0.60003441
#> [25] -1.49167669 -1.05530366  0.11894684 -0.25818750 -0.84677252  2.07398325
#> [31] -0.60831152  0.78335902  0.45210259 -1.05652325 -0.30095115  0.20361402
#> [37] -1.36169564  0.11097343 -1.11684970  1.66399814  0.06007734  1.35932805
#> [43]  1.13993162  1.04056666  1.44447337 -1.09509360 -0.20536797 -0.22885541
#> [49] -1.06064057 -1.42084892  1.61972024  0.05055291 -0.73095552 -0.02253699
#> [55]  1.22242238 -1.30657291  0.64185024 -0.20405723  0.45268331 -0.81430453
#> [61] -1.11999100  0.61961511 -0.18541009  0.25505837 -0.11288202  0.10624340
#> [67]  1.27289077 -0.65136265  0.05857765  0.54267087  1.28711792 -1.22413234
#> [73] -0.26025788  1.88077852  0.97105882  0.11126840 -1.57443516  1.30479528
#> [79]  0.77987831 -0.50060114
#> 
#> $Forecasts_Train
#> Time Series:
#> Start = 1 
#> End = 80 
#> Frequency = 1 
#>       Series 1     Series 3    Series 4    Series 5    Series 6    Series 7
#>  1  0.49035870  3.149106584  0.46437044  1.71035305  0.33958138  0.85505494
#>  2  1.29856014  1.767830806  0.85851602  1.67950686  2.57436136  0.72848170
#>  3  0.28742452  2.049470658  0.63612821  2.27472718  0.82215308  2.25262607
#>  4  0.26586712  1.027658636  2.51242817 -0.55670766  1.28138024 -0.78006982
#>  5  1.06403760  1.526688482 -0.98958234 -0.75659683 -0.28676256  2.92579293
#>  6  0.72273245 -0.005815529  0.91806524 -0.73411887  0.99314071  1.61582847
#>  7  0.40760472  3.197404454  2.31845039 -0.91714470  2.60080835  1.58505899
#>  8  1.69111890  0.702314124  1.32960310  0.14908582  0.60056549 -0.36244767
#>  9  0.53254793 -0.163425224  1.07887669  0.43436698  2.21667485 -0.16788843
#> 10  1.55818258 -0.560937779  0.96632378  0.59304219  0.11642798  1.78825532
#> 11  0.34223086  1.097984141  0.57108564  2.36118225 -0.17334560  0.79638630
#> 12  1.90763130  2.329258487  0.23239814  1.48491225  1.06812522  1.17175879
#> 13  1.55607918 -0.110599691  0.84442977  3.08698121  1.17980929  0.97827039
#> 14 -0.80581475  2.010167512  2.00865252  1.46893454  1.05667256  1.56374507
#> 15  0.87430724  2.068816561  0.33768070  2.18911369  0.79610998  0.76321697
#> 16  2.14699845 -0.187365519  2.58519311  1.71322852  0.48814835  1.05391798
#> 17  2.62758961  1.708963397  0.60726478  2.85862373  1.63591495  0.31255651
#> 18  1.02754292  0.702916655  1.84197242  2.28961667  0.59101182  0.17681827
#> 19 -0.80362627  1.503916904  0.26679451  1.08495291  0.12775184  0.44079819
#> 20  3.19379384  1.429044295  2.91702809  0.88090793  0.09030641  0.91030261
#> 21  1.15147619  1.038899464  2.08631377  2.84641728  0.02171143 -0.31239889
#> 22  0.11329226 -0.270471957  0.75203685  1.72469559  1.06147517  1.18857317
#> 23 -0.52730675  1.336518748  2.68951417  0.50385051  2.02049362  0.09522516
#> 24  1.06343685  0.816299130  0.31409716 -0.09552238  0.89251584 -0.34638129
#> 25  2.44035374  0.250284052  0.31616172  2.33152044  0.56948658  0.68182384
#> 26  0.61124939  1.100501383  0.07936381  2.11960963 -0.16021862  0.45319854
#> 27  1.16547789 -1.054171126  2.44943900  1.36484498  1.06396381  1.16360222
#> 28  0.65561619  2.804254467  1.76861728 -0.76243445  0.28346271  0.01356092
#> 29  1.59548588  3.043544311  2.34751346  1.30873823  2.93396120  1.66865272
#> 30 -0.14925506  1.221017455 -0.01794408  0.53307285 -0.09841434  0.17115411
#> 31  0.20209834  1.416987156  1.25954334 -1.26358591  0.50231918  1.66570148
#> 32  0.74339088 -0.133568286  0.32993216  1.93793288 -0.45490069 -0.89634956
#> 33  0.07458618 -0.357276791 -0.03109610  1.21784137 -1.32189721  2.25551925
#> 34  1.16581417  0.303869420 -0.17852637  0.53966693  0.54581364  0.55883657
#> 35  1.86729664  0.916255662 -0.03674990  0.27750348  0.71456714  2.80619254
#> 36  1.17487414 -0.603860166  1.08169121 -0.34135847  1.72351212  0.40800620
#> 37  1.86361750  0.356379728  1.39451909  1.41614559 -0.27472929  1.88950391
#> 38  1.58464519  1.766030845 -0.09285101  2.04205620  1.40001639  1.18467150
#> 39  0.66919058 -0.568302346  1.05622671  0.79503770  1.49554501  3.40058614
#> 40  1.30578017  1.289982800  1.41616058  1.18654062  1.27708127 -0.60291203
#> 41  0.96753762  1.203216841 -0.50472343 -0.03517353  1.73085437  1.79416950
#> 42  3.84688023  0.282846256 -0.52705481  0.43860180  1.30048110  0.48778065
#> 43  1.49219553  0.502466673  1.70898499  2.21217630 -0.42535649 -0.07866404
#> 44  1.43157315  1.408204053  0.27839911  1.44747061 -0.26097392  1.07005877
#> 45  1.30864534  1.382958103  2.66112171 -0.75693836 -0.10904965  0.92795131
#> 46  1.07332106  0.001486564  1.17064527  0.83317998  1.28915016  1.02028741
#> 47  1.83151376  1.910345038  0.42665777  0.05433657  0.40084826  0.88452044
#> 48  1.76206608  2.930613267  1.34124462  0.03187431  0.11171237 -0.20934950
#> 49  0.86774028  0.960831119 -0.03512074  1.29994442  0.62686894 -0.10762520
#> 50  1.33256468  1.198609355  0.45814060  1.12740128  1.06682605  1.77776598
#> 51 -0.47332243  0.658499779  2.10389238  0.28127889  2.20363134  1.29708561
#> 52  0.89825061  0.160376162  0.72750150 -0.53798220  0.85462936 -1.23586938
#> 53 -0.71793245  2.715632975  2.07031297  2.22030106  1.84828597  0.73057350
#> 54  0.24569425  0.852893054  0.19913196  1.13654499  1.30626366  1.80402475
#> 55  0.40246995  0.794617003  0.70033910  0.27802854  0.55639267 -0.09518811
#> 56  1.45619783  1.257291618 -0.41035644 -0.18956674  2.40499675  0.02116943
#> 57 -0.12867484  0.718096693  0.58409047  0.43987850  2.56109440  0.75269527
#> 58  2.39187213  0.437945903  2.13261053  0.96516226  0.89035456  1.00735801
#> 59  0.01381174  2.438027039  0.02707141  0.02924701 -0.28576661  0.54823456
#> 60  1.24736147  0.168934646  2.31967808  0.31784723  0.82667061 -0.03348150
#> 61  0.52179143  0.722708657  2.12845772 -0.65727594  1.07993430  2.55854567
#> 62  0.47616934  0.305688670  2.44005492  2.35437176  2.19821615  1.54165973
#> 63  1.06647309  2.425531551  0.37943573 -0.34087915  2.41264420  0.17645766
#> 64  2.99995832  0.517560044  0.76812127  0.14978533  1.13943035  2.07253001
#> 65  0.60378299  1.114673583  1.60123284 -0.46883665  2.18068910 -0.46561815
#> 66 -0.61924429  2.105294105  0.44256679  1.11567925  1.70342419  0.75260718
#> 67  0.45119769  0.624233078 -0.33337714  1.14419836  1.67898783  1.15098622
#> 68  1.60586942  1.862004837  2.20678683  1.02960004  2.10339785  2.43533756
#> 69  2.03823465  1.277032722  2.29525044  2.53412814  1.51712787  2.86002736
#> 70 -0.20250667  1.337860721  0.43486175  1.61599417  1.39528062  0.78241759
#> 71  0.82448322 -1.430270245 -0.30064557  0.56909209  1.12032389  0.15803445
#> 72  1.70980177  2.406439541 -0.17450618  1.80849261 -0.31276376  1.27653493
#> 73  0.46912511  0.112389484  0.33087409  2.31663838  1.21793320  0.19517838
#> 74  0.86465865  1.441556058  1.02219381  2.45161737  1.13355408  0.32338238
#> 75  0.91113580  0.450350377  0.01045436  2.22567289  1.21228962  1.94666605
#> 76  0.87926484  0.168281256  2.06337540  1.27932859 -1.51274244  1.38864955
#> 77  2.42907726  0.245012886  1.62183910  0.66378049  2.05924828  1.70864246
#> 78  0.69938455  1.201520525  1.56605575  0.01440620  0.86853876  1.69960394
#> 79  1.34113381  0.363036108  1.90006928  0.45562589  2.54274721  1.52521772
#> 80  2.81163825  0.323114031  0.77066651  1.63613206  1.21669940  0.67784463
#>       Series 8    Series 9   Series 10
#>  1  3.91371591  0.98942111  0.19428752
#>  2 -0.60962376  1.88108433  1.63362545
#>  3  0.01751107 -1.67749574  2.21481436
#>  4  0.48933195  1.79620347  0.29995128
#>  5  0.38117873  0.48538920  1.09179893
#>  6 -0.13977187 -2.03856976  0.22567676
#>  7  0.46368934  1.77696369  1.90747895
#>  8  1.86970373 -0.57831478 -1.04241291
#>  9  2.27819188  1.68408009  1.69154955
#> 10  0.17670473  0.96750101 -0.06905579
#> 11  1.82355658  2.16444998 -0.46970765
#> 12  0.68717926  1.18557708  2.66229690
#> 13  1.21522900 -0.11277775  0.82153004
#> 14  0.65963727  1.80440348  1.28718226
#> 15 -0.38048976  1.20848684  0.91861461
#> 16  2.50321203  1.35235972  1.57563848
#> 17  1.76727933  0.46222042  2.39190256
#> 18  1.09670182  0.54365509  0.73019364
#> 19 -0.54899892 -1.00079923  1.54502709
#> 20  1.99025535  2.29071377  0.22455937
#> 21  0.11716066  1.75785227  2.04599941
#> 22  2.11598653  1.10785113  2.35656135
#> 23 -1.09890000  1.59356777 -0.61276485
#> 24  2.05279721  1.11149809  1.90211785
#> 25  1.33247519  0.28028114  1.73332404
#> 26 -0.11823245  1.70003447  2.54327731
#> 27  2.93411500  2.35354562  0.58515503
#> 28  0.23022349  2.13331046  1.26926129
#> 29  2.02038894  2.11074333  1.58435749
#> 30  0.78157083  0.89827863  0.68346651
#> 31  0.87255867  0.52996908  0.21212636
#> 32  0.76042865 -1.07028857  0.61946298
#> 33 -0.07730710  2.05413101  0.93412275
#> 34 -0.78824814  1.22819036 -0.09929003
#> 35 -0.18593829 -0.70573457 -0.56296418
#> 36  1.09284674 -0.15669929 -0.16340657
#> 37  0.02285816  1.25275921  1.95261152
#> 38  1.07814076  1.46123347  1.89518638
#> 39  1.64947199  1.23982474  1.37366894
#> 40  2.96577802  1.27435099  0.36342315
#> 41 -0.08485201  1.55414240  0.74210636
#> 42  0.25138833  2.11973175  0.63214593
#> 43 -1.60315888  1.58706314  3.53679844
#> 44  0.66287890  3.43790459  1.91911025
#> 45  0.53912555  0.01947789  0.84162627
#> 46  3.38797802  0.76937009  1.12088276
#> 47  1.52196707  1.00042240 -0.45226374
#> 48  1.03698765  0.33467700  1.29205312
#> 49 -0.63649277  0.88391871  0.09264714
#> 50  0.50837405  0.80914416  0.37013699
#> 51  1.89786074  1.37809278  0.83128843
#> 52  1.70222734  0.21292087  0.35790268
#> 53 -1.34641829  0.34107469  0.25264315
#> 54  0.90354444  2.22629344  0.10179832
#> 55  1.28584865  1.98574531  2.95447612
#> 56  2.27015607  2.90747707 -2.51178876
#> 57 -0.79585602  0.47469585  2.60194143
#> 58  0.47228407  1.57201134  0.43827222
#> 59  1.59725987  1.45826381  2.05537311
#> 60  3.75767673  1.29687349  0.87961405
#> 61  2.52794529  0.04065551  0.33866323
#> 62  2.95546755  1.29645417 -0.33659460
#> 63  0.33503500  1.05424069  1.35096380
#> 64 -1.44750391 -0.71805934  0.73086714
#> 65 -0.21332951  2.95746011 -0.15953117
#> 66  1.39157383 -0.32167992  1.59336963
#> 67  1.21169905 -0.55743786 -0.19719721
#> 68 -0.19817043  2.46791159  0.81850573
#> 69  0.47833999  0.96273726 -0.01392764
#> 70  0.90047440  1.10788248  1.43907960
#> 71  1.16385385  1.77717612  2.55008375
#> 72 -0.78445452  0.07902372 -0.05446601
#> 73  0.47564812  2.38264151 -0.29034513
#> 74 -0.31142110  2.29459293  0.82536649
#> 75  0.83778725  1.86281467  0.49043168
#> 76 -0.46483909  2.22605321  0.40146523
#> 77  0.14608079  1.36502343  0.02282874
#> 78  1.60676966  0.73658556  1.92849899
#> 79  1.40285543  1.62074063  3.22382898
#> 80  1.25943923  1.23617040  0.16295846
#> 
#> $nmodels
#> [1] 9
#> 
#> $modelnames
#> [1] "Series 1"  "Series 3"  "Series 4"  "Series 5"  "Series 6"  "Series 7" 
#> [7] "Series 8"  "Series 9"  "Series 10"
#> 
#> attr(,"class")
#> [1] "foreccomb"