Computes forecast combination weights according to the trimmed bias-corrected eigenvector approach by Hsiao and Wan (2014) and produces forecasts for the test set, if provided.

comb_EIG4(x, ntop_pred = NULL, criterion = "RMSE")

Arguments

x

An object of class foreccomb. Contains training set (actual values + matrix of model forecasts) and optionally a test set.

ntop_pred

Specifies the number of retained predictors. If NULL (default), the inbuilt optimization algorithm selects this number.

criterion

If ntop_pred is not specified, a selection criterion is required for the optimization algorithm: one of "MAE", "MAPE", or "RMSE". If ntop_pred is selected by the user, criterion should be set to NULL (default).

Value

Returns an object of class foreccomb_res with the following components:

Method

Returns the used forecast combination method.

Models

Returns the individual input models that were used for the forecast combinations.

Intercept

Returns the intercept (bias correction).

Weights

Returns the combination weights obtained by applying the combination method to the training set.

Top_Predictors

Number of retained predictors.

Ranking

Ranking of the predictors that determines which models are removed in the trimming step.

Fitted

Returns the fitted values of the combination method for the training set.

Accuracy_Train

Returns range of summary measures of the forecast accuracy for the training set.

Forecasts_Test

Returns forecasts produced by the combination method for the test set. Only returned if input included a forecast matrix for the test set.

Accuracy_Test

Returns range of summary measures of the forecast accuracy for the test set. Only returned if input included a forecast matrix and a vector of actual values for the test set.

Input_Data

Returns the data forwarded to the method.

Details

The underlying methodology of the trimmed bias-corrected eigenvector approach by Hsiao and Wan (2014) is the same as their bias-corrected eigenvector approach. The only difference is that the bias-corrected trimmed eigenvector approach pre-selects the models that serve as input for the forecast combination, only a subset of the available forecast models is retained, while the models with the worst performance are discarded.

The number of retained forecast models is controlled via ntop_pred. The user can choose whether to select this number, or leave the selection to the inbuilt optimization algorithm (in that case ntop_pred = NULL). If the optimization algorithm should select the best number of retained models, the user must select the optimization criterion: MAE, MAPE, or RMSE. After this trimming step, the weights, the intercept and the combined forecast are computed in the same way as in the bias-corrected eigenvector approach.

The bias-corrected trimmed eigenvector approach combines the strengths of the
bias-corrected eigenvector approach and the trimmed eigenvector approach.

References

Hsiao, C., and Wan, S. K. (2014). Is There An Optimal Forecast Combination? Journal of Econometrics, 178(2), 294--309.

Author

Christoph E. Weiss and Gernot R. Roetzer

Examples

obs <- rnorm(100)
preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]
train_p<-preds[1:80,]
test_o<-obs[81:100]
test_p<-preds[81:100,]

## Number of retained models selected by the user:
data<-foreccomb(train_o, train_p, test_o, test_p)
comb_EIG4(data, ntop_pred = 2, criterion = NULL)
#> $Method
#> [1] "Trimmed Bias-Corrected Eigenvector Approach"
#> 
#> $Models
#>  [1] "Series 1"  "Series 2"  "Series 3"  "Series 4"  "Series 5"  "Series 6" 
#>  [7] "Series 7"  "Series 8"  "Series 9"  "Series 10"
#> 
#> $Fitted
#> Time Series:
#> Start = 1 
#> End = 80 
#> Frequency = 1 
#>  [1]  1.335063601 -0.644402863  0.328956016  0.348816087 -0.622624239
#>  [6] -0.158612192 -0.175035127 -0.310570441  0.115171899  0.306931366
#> [11] -1.079815471  0.017972635 -0.465935734 -0.871305224 -0.799094094
#> [16] -0.723282684  0.937945433  0.980787807  0.585427889 -0.505934682
#> [21] -1.037574059 -0.441399029  0.261242181 -0.206246816 -1.383117334
#> [26]  0.727166603  0.531836406 -0.563403972 -0.161774697  0.494777217
#> [31]  1.771562418  1.665781476 -0.612269599  0.493072774  1.198774526
#> [36] -0.023118604 -0.202766782 -0.559537861 -0.723417736  1.562707632
#> [41]  0.681430642  1.206483024 -1.109878045  0.507411927  0.587406573
#> [46] -0.261022043  0.024605345  0.566618079  0.056551758  1.201987126
#> [51] -0.201336091 -0.004775891  0.454740588 -0.477868146  0.815272943
#> [56]  1.446328166  0.239345776 -0.003389148  0.770581945  0.307590720
#> [61]  0.116559144  0.595001711  0.397686109 -0.256410329  0.354825958
#> [66] -0.508141108  0.045626799 -0.418520940 -0.509666637 -0.610703802
#> [71] -0.738245285 -0.582202875  1.827022151 -0.055176968  0.943166432
#> [76]  1.454457013  1.161106509  0.174711446  1.382156327  0.639326077
#> 
#> $Accuracy_Train
#>                    ME     RMSE       MAE      MPE     MAPE        ACF1
#> Test set -3.75134e-18 1.053826 0.8396734 76.56726 281.7393 -0.05380646
#>          Theil's U
#> Test set 0.4137399
#> 
#> $Input_Data
#> $Input_Data$Actual_Train
#> Time Series:
#> Start = 1 
#> End = 80 
#> Frequency = 1 
#>  [1]  0.313640277  0.099394436  0.571102495 -0.493303419  0.740020795
#>  [6] -1.155857183  0.659237226 -0.244471592 -1.075666053  0.237334112
#> [11] -0.536922320  0.300644865 -0.682604279 -1.096695753  0.108056945
#> [16]  0.660196786 -0.159514144  0.924566330  0.847633466  0.240674695
#> [21]  0.661566069 -0.673336129  0.163818099 -0.728350759  0.763825227
#> [26] -1.369016542  0.669089877  0.240242204  0.222608890 -1.598929516
#> [31]  0.074311585 -0.283600634  0.524440134  0.587794507 -0.328265236
#> [36]  0.002751359 -0.593736447 -1.020164111  0.350226390  1.035387355
#> [41]  1.483234452  0.769098040  0.053119010 -1.015176799  1.890509601
#> [46]  1.177205664  0.696205297 -0.164212773  0.003891041  1.264764129
#> [51]  0.536097954  1.619151199  1.661912574 -0.141171950 -0.124441537
#> [56]  1.333175527  1.189194927  1.865422197 -1.411514849  0.170540146
#> [61] -0.345455850  0.191509854 -0.108988388 -2.150607787  0.531117718
#> [66]  1.700541897 -0.100690935  0.992127249 -0.018333892  0.448814282
#> [71] -0.951187908 -0.248644023  0.338648336 -0.486257148 -0.878755079
#> [76]  0.978506032  0.671988924  0.236001915  2.187088647 -1.189139992
#> 
#> $Input_Data$Forecasts_Train
#> Time Series:
#> Start = 1 
#> End = 80 
#> Frequency = 1 
#>       Series 1      Series 2      Series 3     Series 4     Series 5
#>  1  1.96865312  2.2446423369  1.2317372938  1.073472202  2.736812526
#>  2  0.18020626  2.1014275251  2.6480743550 -0.379097382 -1.308020822
#>  3  0.60627049  1.7111920422 -0.2680904218  1.390321293 -0.044934878
#>  4 -1.16396541 -0.7602015024  1.8999077442  0.873260503  0.156264489
#>  5  1.97064910  1.0160730284  1.0961882925 -0.594987464 -0.179676073
#>  6  1.12730731  1.9409703402  0.5225027703 -0.486629375  0.788944918
#>  7  0.20303963  0.6928244798  1.6734746158  1.543237557  0.847169123
#>  8  0.41085597  0.7857560417  0.7613950961  0.853856739  0.593755513
#>  9  2.44459913  0.9145856463  0.7597119703  1.515236058  0.894626922
#> 10  1.79142336  0.8268979380  1.4158278656  1.476046632  0.850480623
#> 11  1.60694849  0.9745041985  1.1586077876 -0.229833435  0.202130597
#> 12  0.99886358  0.9512123796  1.8833879094  1.892031183  0.626046336
#> 13  2.37549513  0.6009851326  1.9897073164  2.247329194  0.245537312
#> 14  1.27539604  2.3365197787  1.2799171455  0.568533798 -0.258135951
#> 15  0.30864739  0.6483725880  1.9354254992  0.006062263 -0.034810489
#> 16  1.80521768  0.8801045812 -0.4285511338  0.937209829  0.436221414
#> 17  1.20214055  2.0480292237  2.7780004902  1.302754976  2.341576341
#> 18  1.12380019  2.3021164697  0.7591538794 -0.002338710  2.154222097
#> 19  1.99787188  1.5666581597  0.8573461962  1.308398985  0.628592573
#> 20  0.70203255  1.3487243227  2.6918088265  0.727337181  0.962864734
#> 21 -0.07425045  1.2172936453  2.4222605591  1.248447101 -0.617928028
#> 22  2.10163216 -0.0932411607  2.4687847038  1.176871161 -0.208053225
#> 23  0.60612170  0.6265697205  1.0162787649 -0.515818006  0.312705255
#> 24  1.55476638  1.1827660647  1.9173290051  0.100275464 -0.106083424
#> 25  1.11998851  0.9239717564  1.8291312939  1.875530351 -1.113776869
#> 26  1.51626857  0.4662993205  0.1977654583  1.420843492  1.781112348
#> 27  2.02704216 -0.1259466128  1.4499638612  2.287537376  1.882248022
#> 28  1.73166309 -0.8921976795  1.3051085721  1.061325881  0.098254422
#> 29  0.88754969  0.5395927407  2.2529292193  0.874989746  0.762082373
#> 30  2.42917302 -0.0004400262 -1.3415260845  1.140517911  2.398710985
#> 31  1.89530083 -0.9081040814  1.4082198511  0.407290765  2.598698114
#> 32 -0.50043104  1.5301821303  0.7579575260  2.701228886  2.884503036
#> 33  0.29265949  0.9536132918  1.5330827842  1.424448357 -0.778236014
#> 34  0.88444052  2.8730280890  2.1890457225  1.593755265  2.112988147
#> 35  1.08755882  1.9976233704  0.9618108293  0.851307434  2.105230384
#> 36  1.39420481  0.8999083061  1.8988936445  1.580500240  0.789172603
#> 37  0.39115956  1.3277712896  0.4772511053  0.303187650  0.419227073
#> 38  0.34886577  1.5405269503  0.2547668425  0.810555137  0.024491550
#> 39  2.48379535  1.6305111258  0.6624423417  2.189252033 -0.444738489
#> 40  1.26621809  1.4618450676  2.1506074866  1.378640532  2.483263658
#> 41  0.40012924  0.1024411143  1.6382207356  0.804581938  2.355249111
#> 42  2.46834368  1.5363210222  0.0532502269 -0.482625530  2.708018036
#> 43  0.38016321  0.8603891234  0.8612951529  0.127441212 -0.258808375
#> 44  1.56684614  0.6236072163  0.1791188111  3.221341483  0.047873051
#> 45  2.38543341  0.8405456105  2.7852701711 -0.157051448  1.545235153
#> 46  2.39847921  0.1898131114  0.5618313505  2.070486157  0.005157065
#> 47 -0.76108035  1.6326611309  0.3177582548  2.246061380 -0.234830507
#> 48  0.50721066  0.7485194848  0.3688252576  0.750203170  1.697818168
#> 49  1.85439446  1.8205041997  2.2535207590  1.363077849  0.579955971
#> 50  1.38592556  1.4281143006  0.1757042920  1.904834618  3.098480585
#> 51  3.61835203  0.0423233566 -1.2514922315  0.140416655  0.859823077
#> 52  0.88371788 -0.9194753961  1.1722346485  0.778447381 -0.259911900
#> 53  1.87622538  0.5676733473  2.0256499762  1.453850617  0.390422086
#> 54  2.09069477 -0.0589213876  2.0334431254  1.039029817  0.619152542
#> 55  2.89174186  1.1692968665  1.9513296525  1.375649585  1.118707642
#> 56  1.41127850 -0.7832504600  1.1503630497  0.697308384  2.593905788
#> 57  0.08029804  1.0357061652  1.0601284941 -1.773460943  1.461103185
#> 58  0.18281624  0.0205677124 -0.8465681148  0.737464444  1.107043141
#> 59  1.47891822  2.2542036442  1.0241911468  0.738292819  1.709232438
#> 60  0.53797561 -0.1315097093  1.9233125002 -0.275719119  0.790857565
#> 61  1.78143265  3.1078076233  1.1385579322  1.174430297  1.214125203
#> 62  0.84247034  0.1087309070  0.0001031517  2.470511612  1.820240635
#> 63  0.11578136  2.2806063620  1.1390665440  0.452119850  0.226161718
#> 64  2.30983189  0.5709780328  1.7744851363  0.020588019 -0.343105244
#> 65  0.25846317 -0.0270144236  1.6105194979  0.792629718  1.000195208
#> 66 -0.17288098  1.7844363375  1.1359310120  0.136547952 -0.604806873
#> 67  0.73415528  1.1267036790  2.1804394700  0.304999773  2.979400988
#> 68  2.11832689  1.0642447897 -1.2696083958  1.699632298  1.117316369
#> 69 -0.75666350  1.6424298326  1.9218732438  2.956360739 -0.347508097
#> 70 -0.45267787  1.0919274157  1.0327068023  1.072339490  0.935929620
#> 71 -0.17016771  2.0681802887  0.7823345855 -1.445122538 -0.554053290
#> 72  0.01747620  1.2765818487  2.3373263108  2.000235916 -0.284473481
#> 73  0.73615647  1.3129339008 -0.0361967214  1.505483338  2.714983645
#> 74  1.89144848  2.0994624751 -1.1164038186  1.120519237 -0.193269619
#> 75  1.18169908  2.0942126967  0.4357225764  1.350294546  1.760966084
#> 76  0.17057424  3.1868529745  0.4783049302  1.512846500  2.343785712
#> 77  1.40949797 -0.2479677883  0.3942210702  3.692051882  1.201280788
#> 78  0.81590048  1.0491689020 -0.8325568245  0.930075188 -0.054762689
#> 79  0.74052779  1.5045447613 -0.5274198716 -0.261517442  2.623496151
#> 80 -0.54151832  2.6777358200  1.8160125574 -0.235984454  1.959824434
#>       Series 6    Series 7    Series 8    Series 9   Series 10
#>  1  1.40132604  0.37646842 -0.24411216  0.72323535  0.83093430
#>  2  1.89382073  2.48550434 -0.35000385  0.89983076  0.50879653
#>  3  2.52041601  1.99985895  0.63563039  0.86526860  0.62733796
#>  4  2.32323779  2.17264086  0.74924441  0.03061484  1.64291495
#>  5  0.59119133  2.42377756  1.79426445  1.87147108  1.49967663
#>  6  0.45125562  2.15075366  1.17485962  0.81116262  1.86533956
#>  7  0.34549028  1.54222019  1.24769208  2.84257824  1.33302189
#>  8  0.35103914  1.53515714  1.31831530  0.86489373  1.45650526
#>  9  0.92623487  1.92464301  0.56569279  1.11264989  2.10531543
#> 10  1.40034121  1.96977288  1.42623013  0.02850605  0.11583562
#> 11 -0.87016543 -0.26978483  3.13046361  2.38512199  1.19641173
#> 12  1.03415557  1.82679603  1.28619021  1.82974494  2.32082436
#> 13  0.42649235  0.18470645  1.04430375  2.53012021  1.96463209
#> 14  0.13877900  2.10815917  1.73244263  0.01250418  0.32283750
#> 15  0.03012699 -1.76382532  0.92127741  1.71381499  0.85274798
#> 16 -0.36708638  1.14275097  0.99242409  0.93363723  0.68281709
#> 17  1.00195540  0.26125687  1.30990868  1.10583897  0.14815402
#> 18  1.32031158 -0.10964448  1.70575961  1.78568171  0.66790601
#> 19  2.27772951 -0.24724444  0.20770516  0.92210780  1.86661050
#> 20 -0.51992249  1.05191535  2.25781734 -1.80435340 -0.51548398
#> 21  0.20413097  0.20057854  1.47378305 -0.28473533  1.49724359
#> 22  1.02328185  0.96559253  0.72949296  1.30166873  0.14825251
#> 23  1.94361176  1.25767581  1.38011371  0.88405716  0.23792503
#> 24  1.41783516  1.09144973  1.88185547  2.14286398  1.53770802
#> 25  0.03848286  3.79674885  1.54881250  1.69885978  1.16825697
#> 26  1.20970179  2.46182096  0.31200203 -0.16333250  0.40341920
#> 27  0.65954257  1.25865343  2.06783066  1.47945858  0.11993173
#> 28  0.38864542  2.37582304  1.45161615  1.87639430  0.67692068
#> 29  0.47645881  0.14290013 -0.14881513  1.83059466  0.67849630
#> 30 -0.04000679 -0.12952958  1.64756408  1.85208880  0.41335302
#> 31  2.52555816  1.02333506  0.52605308  0.47282302  4.10197629
#> 32  1.95110259  1.65314549  1.21423157  1.23292009 -0.54514600
#> 33  1.33033329  1.99429107  1.84778699  1.45245792  3.30585613
#> 34  0.29821987  0.32755356  1.19456816  0.46183082  1.92697061
#> 35  1.85783490  1.96473030  1.91344304  0.45173799  0.77989585
#> 36  0.74864395  4.45321707  1.61826960 -0.27377083  1.91080294
#> 37  0.79675563 -0.63342748  1.70621431  0.76663341  2.26803334
#> 38  0.48542279  0.86327978  0.82820022  0.18614931  1.47585548
#> 39  0.68700522  0.83154230  0.96514060  1.47302415  2.10212405
#> 40  2.20489204  1.30333270  0.74012145  0.79634941  1.14459244
#> 41  0.42206312  0.79945050  0.91997319  1.02554109  0.82517923
#> 42  1.15331519  2.43852476  0.40240700 -0.47943750  0.22569294
#> 43 -0.38452799 -0.10511903  0.11223024  1.84200869  0.43160438
#> 44  2.80138082  1.95627173  0.80953716  0.92592723 -0.47365249
#> 45  1.18498084 -0.86565201  0.12645138  1.24927217  2.29635646
#> 46  1.16436187 -1.10968041  1.27421090  0.86192134  0.67991440
#> 47  2.07907834  1.58948920  2.38556056  0.87653115  1.12599109
#> 48  0.95669041  1.77122633  0.08390879  0.58607518  0.27606396
#> 49  1.17407246 -0.28491169  1.88948625  0.12143076  1.45288752
#> 50  0.67610815  0.27065208 -0.09563775  0.68912011 -0.59154748
#> 51  0.27256562  0.95186291 -0.05525544 -0.31072884  0.96826032
#> 52  2.04455078  1.17949086  1.70347821 -0.10291258 -0.15996667
#> 53  2.27568485  0.48361356  1.00316205  1.23118055  2.95394186
#> 54 -0.04688776  3.67819315  0.12479238  0.37056467 -0.79987173
#> 55  2.19606702 -0.48970482 -0.13789391  2.08529626  0.89807211
#> 56  1.81679883  1.05969581  0.12193681  0.33935418  1.90432320
#> 57  0.52103340  0.98634290 -0.23184091  0.27824269  2.04921417
#> 58  0.41153939  0.02145690  0.65287291  1.56549907  1.44082486
#> 59  1.39110975  1.77920914  1.86562677  1.44530804  3.93591730
#> 60  1.47315035  2.00547855 -0.82146488  1.61267604 -0.66494640
#> 61  0.54688679  1.16981226  0.62379285  0.85495612  1.12991283
#> 62  0.87252244  0.31874027  3.15838990  1.72965561  0.51670322
#> 63  2.34694113  0.43107677  0.90353409  1.19591266  2.16167881
#> 64  1.59131543  0.01868282  1.08434945  0.31079101  1.68938236
#> 65  1.32637123 -0.52995077  2.14050509  0.10100857  1.38200514
#> 66  1.35151839 -0.89544284  3.01686481 -0.24661791  3.00677129
#> 67 -1.72173507  1.00690779  1.51823111  0.23330553  2.24764083
#> 68 -0.51274392  2.28109127  2.38252496  1.74700846  0.70127033
#> 69  1.04021564 -0.02291424 -1.22120021  2.69972293  1.42455172
#> 70 -0.71784825  1.01175988  0.68387929  0.67331275  0.07808633
#> 71  0.78526596  0.62858423  2.57948024 -0.46360508 -0.27906183
#> 72  0.80541967  0.63402075  0.33676302  1.53220604  0.61992347
#> 73  2.50821774  0.86671401  2.10322702  1.36935852  1.45239553
#> 74  1.85406484  0.63983599 -0.17100972  1.23896496  0.62001881
#> 75  1.70833614  1.26889896  0.79756314  1.34567917  0.91847009
#> 76  2.13401625  0.38806393  1.20918533 -1.38776611  0.04454325
#> 77  2.85698723  1.05960047  2.15901204  1.21242756  1.13071180
#> 78  2.19332437  1.07756764  0.23518878  1.35240629  0.89069058
#> 79  1.64040648  0.18655019  0.06948791 -0.31142217  1.25588509
#> 80  0.80283431  0.70677923  2.27564272  2.58733337 -0.10263718
#> 
#> $Input_Data$Actual_Test
#>  [1]  1.07920317  0.96931102  1.73325205 -0.47410753  0.94508983  0.84511079
#>  [7] -0.39175260  1.30957807  0.01821672  1.30593031  0.72810676 -0.34879933
#> [13] -0.23721267  0.48875874 -0.30467485 -2.28620298  0.22212410  2.40701415
#> [19]  0.06481441  0.56561648
#> 
#> $Input_Data$Forecasts_Test
#>           Series 1     Series 2    Series 3   Series 4   Series 5    Series 6
#>  [1,]  1.984272347  0.794773868 -0.54015484  0.7250048  1.4622399  1.89279736
#>  [2,]  0.851731723  0.563581776  0.13426273  1.1676041  1.0179238 -0.31745893
#>  [3,]  1.732314401  1.129545811  2.65635708  2.6594422  2.0339228  1.91299488
#>  [4,]  0.454453529  1.219449923 -0.04809555  1.3317109  0.7721481  1.44789205
#>  [5,]  0.649160585  2.266889027  3.20627387  0.4523562  0.9917039  1.08461088
#>  [6,]  2.420573801  1.498699788  2.24958761 -0.3132371  1.1227509  2.27895661
#>  [7,] -0.471834409  0.748986302  1.38226280  2.6683100  1.4408438  0.94082288
#>  [8,]  0.514075927  0.434876791  0.59561271  1.5357740  1.2784780  2.05983277
#>  [9,] -0.138952099  0.262255178  0.62670243  0.4617262  0.6916118  2.01786716
#> [10,]  0.977416164 -0.234632021  0.99381375  1.1811973 -0.4942440 -0.13207168
#> [11,]  0.297894946  2.739732557  0.27833893 -0.5643136  1.5833295  0.17056546
#> [12,]  0.779305155  0.540085154  1.24531348  1.1596313  2.2432492  0.25215397
#> [13,] -0.007125624  2.142645849  0.06367109  1.8406637  0.1617341  0.48938226
#> [14,]  1.453441611  1.866260418  1.19268557 -0.2106703  0.8030320 -0.70134046
#> [15,]  1.221838843  3.350539729  0.15891917  1.4221186  1.0278114  0.73627308
#> [16,]  1.193158404 -0.268983703  1.87936589  0.5067160  1.4897679  0.04707730
#> [17,]  0.338735658  0.018357106 -0.19420016  2.8498748 -0.1422574 -0.69178973
#> [18,]  1.165049917  0.273525057  0.17627604 -1.1859222  0.4932551 -0.02785455
#> [19,]  0.590124302 -0.008209334  1.98382686  2.0643086  0.5049323  0.78510630
#> [20,]  1.336731248  1.096160317  2.56604591  2.3477264  1.9847252 -0.61418763
#>          Series 7   Series 8   Series 9    Series 10
#>  [1,]  2.11020893  3.1337818 -0.9376121  0.292617966
#>  [2,]  0.25687950  1.3513524  0.2744438  0.189390411
#>  [3,]  0.75459301  1.4840987  1.5542175  0.901185544
#>  [4,]  0.89884004  0.4272724 -0.5103968  2.280283150
#>  [5,]  0.43233703 -0.1826533  1.4684864  2.097768540
#>  [6,]  0.79596281  1.3317818  1.1851125  0.785521368
#>  [7,]  0.71508369  0.8974147  0.1655054  1.519372269
#>  [8,]  1.96279351  2.5461030  0.4282508  2.009634496
#>  [9,]  1.31991054  0.6226223  1.2484283  2.673305166
#> [10,]  1.89192678  2.3868910  2.1213590  1.233097269
#> [11,] -0.30548479  0.6441404  1.9465880 -0.895011724
#> [12,]  0.99088793  0.1423767  1.4886162  2.035629695
#> [13,]  0.08189045  1.8914055  1.2038098 -1.527954719
#> [14,]  1.07327356  1.6954669  0.7343370  1.150991392
#> [15,]  1.86261842  3.4882202  2.2722534  1.476441181
#> [16,]  0.47839400  1.4602865  1.7296138  0.001524042
#> [17,]  0.68839009  1.4541595  1.9877548  2.088733438
#> [18,]  1.86585404  2.5515230 -0.7269225  0.929403183
#> [19,]  0.48945335  2.9685234  2.1755825  2.200515874
#> [20,]  0.23268610  1.3086785  2.1752767 -0.357645995
#> 
#> 
#> $Predict
#> function (x, newpreds) 
#> {
#>     pred <- as.vector(as.vector(x$Intercept) + newpreds %*% x$Weights)
#>     return(pred)
#> }
#> <bytecode: 0x56048b16e578>
#> <environment: namespace:ForecastComb>
#> 
#> $Intercept
#> [1] -0.7938428
#> 
#> $Weights
#>  [1] 0.0000000 0.0000000 0.0000000 0.0000000 0.5448055 0.4551945 0.0000000
#>  [8] 0.0000000 0.0000000 0.0000000
#> 
#> $Forecasts_Test
#>  [1]  0.86438449 -0.38377790  1.18503430  0.28590024  0.24015185  0.85520661
#>  [7]  0.41939423  0.84030365  0.50147321 -1.12322794  0.14640427  0.54307078
#> [13] -0.48296505 -0.67559288  0.10126195  0.03922026 -1.18624428 -0.53779396
#> [19] -0.16137684  0.00787153
#> 
#> $Accuracy_Test
#>                 ME     RMSE       MAE      MPE    MAPE
#> Test set 0.3580339 1.212531 0.9268076 5.502702 281.264
#> 
#> $Top_Predictors
#> [1] 2
#> 
#> $Ranking
#>  [1]  7  9  8  4  1  2 10  6  3  5
#> 
#> attr(,"class")
#> [1] "foreccomb_res"

## Number of retained models selected by algorithm:
data<-foreccomb(train_o, train_p, test_o, test_p)
comb_EIG4(data, ntop_pred = NULL, criterion = "RMSE")
#> Optimization algorithm chooses number of retained models for trimmed bias-corrected eigenvector approach...
#> Algorithm finished. Optimized number of retained models: 8
#> $Method
#> [1] "Trimmed Bias-Corrected Eigenvector Approach"
#> 
#> $Models
#>  [1] "Series 1"  "Series 2"  "Series 3"  "Series 4"  "Series 5"  "Series 6" 
#>  [7] "Series 7"  "Series 8"  "Series 9"  "Series 10"
#> 
#> $Fitted
#> Time Series:
#> Start = 1 
#> End = 80 
#> Frequency = 1 
#>  [1]  0.31765970 -0.32167418 -0.05915056 -0.07438384  0.19858769 -0.07436145
#>  [7]  0.43806593 -0.01913400  0.45428486  0.20796839  0.28658155  0.65600624
#> [13]  0.81719115 -0.19202560 -0.10367758 -0.19465197  0.52425971  0.31648793
#> [19]  0.40341484 -0.31250269 -0.10165390  0.28467341 -0.12746679  0.49304338
#> [25]  0.24707556 -0.05158888  0.66007885  0.27213125  0.11732777  0.22040195
#> [31]  0.82020655  0.31093213  0.48585613  0.45460299  0.35810562  0.35023340
#> [37]  0.03846067 -0.29619644  0.47449016  0.62010199  0.16449325 -0.15923834
#> [43] -0.42068944  0.30523285  0.56118951  0.31477092  0.16264000 -0.23084553
#> [49]  0.48968754  0.01150619 -0.31928100 -0.09296042  0.80752970 -0.15234782
#> [55]  0.71109241  0.34010814 -0.47550604 -0.19645100  0.83011157 -0.28843327
#> [61]  0.20898507  0.58614812  0.20436563  0.21864399  0.20054775  0.09873941
#> [67]  0.17085942  0.19229888  0.15545033 -0.43672311 -0.70206874  0.10354032
#> [73]  0.64455855 -0.17170809  0.31726976 -0.12320633  0.90827654 -0.15144813
#> [79] -0.28158889  0.20810608
#> 
#> $Accuracy_Train
#>                    ME     RMSE       MAE       MPE     MAPE       ACF1
#> Test set 1.064741e-16 0.941017 0.7435324 -200.8646 465.7979 0.00560363
#>          Theil's U
#> Test set  1.021127
#> 
#> $Input_Data
#> $Input_Data$Actual_Train
#> Time Series:
#> Start = 1 
#> End = 80 
#> Frequency = 1 
#>  [1]  0.313640277  0.099394436  0.571102495 -0.493303419  0.740020795
#>  [6] -1.155857183  0.659237226 -0.244471592 -1.075666053  0.237334112
#> [11] -0.536922320  0.300644865 -0.682604279 -1.096695753  0.108056945
#> [16]  0.660196786 -0.159514144  0.924566330  0.847633466  0.240674695
#> [21]  0.661566069 -0.673336129  0.163818099 -0.728350759  0.763825227
#> [26] -1.369016542  0.669089877  0.240242204  0.222608890 -1.598929516
#> [31]  0.074311585 -0.283600634  0.524440134  0.587794507 -0.328265236
#> [36]  0.002751359 -0.593736447 -1.020164111  0.350226390  1.035387355
#> [41]  1.483234452  0.769098040  0.053119010 -1.015176799  1.890509601
#> [46]  1.177205664  0.696205297 -0.164212773  0.003891041  1.264764129
#> [51]  0.536097954  1.619151199  1.661912574 -0.141171950 -0.124441537
#> [56]  1.333175527  1.189194927  1.865422197 -1.411514849  0.170540146
#> [61] -0.345455850  0.191509854 -0.108988388 -2.150607787  0.531117718
#> [66]  1.700541897 -0.100690935  0.992127249 -0.018333892  0.448814282
#> [71] -0.951187908 -0.248644023  0.338648336 -0.486257148 -0.878755079
#> [76]  0.978506032  0.671988924  0.236001915  2.187088647 -1.189139992
#> 
#> $Input_Data$Forecasts_Train
#> Time Series:
#> Start = 1 
#> End = 80 
#> Frequency = 1 
#>       Series 1      Series 2      Series 3     Series 4     Series 5
#>  1  1.96865312  2.2446423369  1.2317372938  1.073472202  2.736812526
#>  2  0.18020626  2.1014275251  2.6480743550 -0.379097382 -1.308020822
#>  3  0.60627049  1.7111920422 -0.2680904218  1.390321293 -0.044934878
#>  4 -1.16396541 -0.7602015024  1.8999077442  0.873260503  0.156264489
#>  5  1.97064910  1.0160730284  1.0961882925 -0.594987464 -0.179676073
#>  6  1.12730731  1.9409703402  0.5225027703 -0.486629375  0.788944918
#>  7  0.20303963  0.6928244798  1.6734746158  1.543237557  0.847169123
#>  8  0.41085597  0.7857560417  0.7613950961  0.853856739  0.593755513
#>  9  2.44459913  0.9145856463  0.7597119703  1.515236058  0.894626922
#> 10  1.79142336  0.8268979380  1.4158278656  1.476046632  0.850480623
#> 11  1.60694849  0.9745041985  1.1586077876 -0.229833435  0.202130597
#> 12  0.99886358  0.9512123796  1.8833879094  1.892031183  0.626046336
#> 13  2.37549513  0.6009851326  1.9897073164  2.247329194  0.245537312
#> 14  1.27539604  2.3365197787  1.2799171455  0.568533798 -0.258135951
#> 15  0.30864739  0.6483725880  1.9354254992  0.006062263 -0.034810489
#> 16  1.80521768  0.8801045812 -0.4285511338  0.937209829  0.436221414
#> 17  1.20214055  2.0480292237  2.7780004902  1.302754976  2.341576341
#> 18  1.12380019  2.3021164697  0.7591538794 -0.002338710  2.154222097
#> 19  1.99787188  1.5666581597  0.8573461962  1.308398985  0.628592573
#> 20  0.70203255  1.3487243227  2.6918088265  0.727337181  0.962864734
#> 21 -0.07425045  1.2172936453  2.4222605591  1.248447101 -0.617928028
#> 22  2.10163216 -0.0932411607  2.4687847038  1.176871161 -0.208053225
#> 23  0.60612170  0.6265697205  1.0162787649 -0.515818006  0.312705255
#> 24  1.55476638  1.1827660647  1.9173290051  0.100275464 -0.106083424
#> 25  1.11998851  0.9239717564  1.8291312939  1.875530351 -1.113776869
#> 26  1.51626857  0.4662993205  0.1977654583  1.420843492  1.781112348
#> 27  2.02704216 -0.1259466128  1.4499638612  2.287537376  1.882248022
#> 28  1.73166309 -0.8921976795  1.3051085721  1.061325881  0.098254422
#> 29  0.88754969  0.5395927407  2.2529292193  0.874989746  0.762082373
#> 30  2.42917302 -0.0004400262 -1.3415260845  1.140517911  2.398710985
#> 31  1.89530083 -0.9081040814  1.4082198511  0.407290765  2.598698114
#> 32 -0.50043104  1.5301821303  0.7579575260  2.701228886  2.884503036
#> 33  0.29265949  0.9536132918  1.5330827842  1.424448357 -0.778236014
#> 34  0.88444052  2.8730280890  2.1890457225  1.593755265  2.112988147
#> 35  1.08755882  1.9976233704  0.9618108293  0.851307434  2.105230384
#> 36  1.39420481  0.8999083061  1.8988936445  1.580500240  0.789172603
#> 37  0.39115956  1.3277712896  0.4772511053  0.303187650  0.419227073
#> 38  0.34886577  1.5405269503  0.2547668425  0.810555137  0.024491550
#> 39  2.48379535  1.6305111258  0.6624423417  2.189252033 -0.444738489
#> 40  1.26621809  1.4618450676  2.1506074866  1.378640532  2.483263658
#> 41  0.40012924  0.1024411143  1.6382207356  0.804581938  2.355249111
#> 42  2.46834368  1.5363210222  0.0532502269 -0.482625530  2.708018036
#> 43  0.38016321  0.8603891234  0.8612951529  0.127441212 -0.258808375
#> 44  1.56684614  0.6236072163  0.1791188111  3.221341483  0.047873051
#> 45  2.38543341  0.8405456105  2.7852701711 -0.157051448  1.545235153
#> 46  2.39847921  0.1898131114  0.5618313505  2.070486157  0.005157065
#> 47 -0.76108035  1.6326611309  0.3177582548  2.246061380 -0.234830507
#> 48  0.50721066  0.7485194848  0.3688252576  0.750203170  1.697818168
#> 49  1.85439446  1.8205041997  2.2535207590  1.363077849  0.579955971
#> 50  1.38592556  1.4281143006  0.1757042920  1.904834618  3.098480585
#> 51  3.61835203  0.0423233566 -1.2514922315  0.140416655  0.859823077
#> 52  0.88371788 -0.9194753961  1.1722346485  0.778447381 -0.259911900
#> 53  1.87622538  0.5676733473  2.0256499762  1.453850617  0.390422086
#> 54  2.09069477 -0.0589213876  2.0334431254  1.039029817  0.619152542
#> 55  2.89174186  1.1692968665  1.9513296525  1.375649585  1.118707642
#> 56  1.41127850 -0.7832504600  1.1503630497  0.697308384  2.593905788
#> 57  0.08029804  1.0357061652  1.0601284941 -1.773460943  1.461103185
#> 58  0.18281624  0.0205677124 -0.8465681148  0.737464444  1.107043141
#> 59  1.47891822  2.2542036442  1.0241911468  0.738292819  1.709232438
#> 60  0.53797561 -0.1315097093  1.9233125002 -0.275719119  0.790857565
#> 61  1.78143265  3.1078076233  1.1385579322  1.174430297  1.214125203
#> 62  0.84247034  0.1087309070  0.0001031517  2.470511612  1.820240635
#> 63  0.11578136  2.2806063620  1.1390665440  0.452119850  0.226161718
#> 64  2.30983189  0.5709780328  1.7744851363  0.020588019 -0.343105244
#> 65  0.25846317 -0.0270144236  1.6105194979  0.792629718  1.000195208
#> 66 -0.17288098  1.7844363375  1.1359310120  0.136547952 -0.604806873
#> 67  0.73415528  1.1267036790  2.1804394700  0.304999773  2.979400988
#> 68  2.11832689  1.0642447897 -1.2696083958  1.699632298  1.117316369
#> 69 -0.75666350  1.6424298326  1.9218732438  2.956360739 -0.347508097
#> 70 -0.45267787  1.0919274157  1.0327068023  1.072339490  0.935929620
#> 71 -0.17016771  2.0681802887  0.7823345855 -1.445122538 -0.554053290
#> 72  0.01747620  1.2765818487  2.3373263108  2.000235916 -0.284473481
#> 73  0.73615647  1.3129339008 -0.0361967214  1.505483338  2.714983645
#> 74  1.89144848  2.0994624751 -1.1164038186  1.120519237 -0.193269619
#> 75  1.18169908  2.0942126967  0.4357225764  1.350294546  1.760966084
#> 76  0.17057424  3.1868529745  0.4783049302  1.512846500  2.343785712
#> 77  1.40949797 -0.2479677883  0.3942210702  3.692051882  1.201280788
#> 78  0.81590048  1.0491689020 -0.8325568245  0.930075188 -0.054762689
#> 79  0.74052779  1.5045447613 -0.5274198716 -0.261517442  2.623496151
#> 80 -0.54151832  2.6777358200  1.8160125574 -0.235984454  1.959824434
#>       Series 6    Series 7    Series 8    Series 9   Series 10
#>  1  1.40132604  0.37646842 -0.24411216  0.72323535  0.83093430
#>  2  1.89382073  2.48550434 -0.35000385  0.89983076  0.50879653
#>  3  2.52041601  1.99985895  0.63563039  0.86526860  0.62733796
#>  4  2.32323779  2.17264086  0.74924441  0.03061484  1.64291495
#>  5  0.59119133  2.42377756  1.79426445  1.87147108  1.49967663
#>  6  0.45125562  2.15075366  1.17485962  0.81116262  1.86533956
#>  7  0.34549028  1.54222019  1.24769208  2.84257824  1.33302189
#>  8  0.35103914  1.53515714  1.31831530  0.86489373  1.45650526
#>  9  0.92623487  1.92464301  0.56569279  1.11264989  2.10531543
#> 10  1.40034121  1.96977288  1.42623013  0.02850605  0.11583562
#> 11 -0.87016543 -0.26978483  3.13046361  2.38512199  1.19641173
#> 12  1.03415557  1.82679603  1.28619021  1.82974494  2.32082436
#> 13  0.42649235  0.18470645  1.04430375  2.53012021  1.96463209
#> 14  0.13877900  2.10815917  1.73244263  0.01250418  0.32283750
#> 15  0.03012699 -1.76382532  0.92127741  1.71381499  0.85274798
#> 16 -0.36708638  1.14275097  0.99242409  0.93363723  0.68281709
#> 17  1.00195540  0.26125687  1.30990868  1.10583897  0.14815402
#> 18  1.32031158 -0.10964448  1.70575961  1.78568171  0.66790601
#> 19  2.27772951 -0.24724444  0.20770516  0.92210780  1.86661050
#> 20 -0.51992249  1.05191535  2.25781734 -1.80435340 -0.51548398
#> 21  0.20413097  0.20057854  1.47378305 -0.28473533  1.49724359
#> 22  1.02328185  0.96559253  0.72949296  1.30166873  0.14825251
#> 23  1.94361176  1.25767581  1.38011371  0.88405716  0.23792503
#> 24  1.41783516  1.09144973  1.88185547  2.14286398  1.53770802
#> 25  0.03848286  3.79674885  1.54881250  1.69885978  1.16825697
#> 26  1.20970179  2.46182096  0.31200203 -0.16333250  0.40341920
#> 27  0.65954257  1.25865343  2.06783066  1.47945858  0.11993173
#> 28  0.38864542  2.37582304  1.45161615  1.87639430  0.67692068
#> 29  0.47645881  0.14290013 -0.14881513  1.83059466  0.67849630
#> 30 -0.04000679 -0.12952958  1.64756408  1.85208880  0.41335302
#> 31  2.52555816  1.02333506  0.52605308  0.47282302  4.10197629
#> 32  1.95110259  1.65314549  1.21423157  1.23292009 -0.54514600
#> 33  1.33033329  1.99429107  1.84778699  1.45245792  3.30585613
#> 34  0.29821987  0.32755356  1.19456816  0.46183082  1.92697061
#> 35  1.85783490  1.96473030  1.91344304  0.45173799  0.77989585
#> 36  0.74864395  4.45321707  1.61826960 -0.27377083  1.91080294
#> 37  0.79675563 -0.63342748  1.70621431  0.76663341  2.26803334
#> 38  0.48542279  0.86327978  0.82820022  0.18614931  1.47585548
#> 39  0.68700522  0.83154230  0.96514060  1.47302415  2.10212405
#> 40  2.20489204  1.30333270  0.74012145  0.79634941  1.14459244
#> 41  0.42206312  0.79945050  0.91997319  1.02554109  0.82517923
#> 42  1.15331519  2.43852476  0.40240700 -0.47943750  0.22569294
#> 43 -0.38452799 -0.10511903  0.11223024  1.84200869  0.43160438
#> 44  2.80138082  1.95627173  0.80953716  0.92592723 -0.47365249
#> 45  1.18498084 -0.86565201  0.12645138  1.24927217  2.29635646
#> 46  1.16436187 -1.10968041  1.27421090  0.86192134  0.67991440
#> 47  2.07907834  1.58948920  2.38556056  0.87653115  1.12599109
#> 48  0.95669041  1.77122633  0.08390879  0.58607518  0.27606396
#> 49  1.17407246 -0.28491169  1.88948625  0.12143076  1.45288752
#> 50  0.67610815  0.27065208 -0.09563775  0.68912011 -0.59154748
#> 51  0.27256562  0.95186291 -0.05525544 -0.31072884  0.96826032
#> 52  2.04455078  1.17949086  1.70347821 -0.10291258 -0.15996667
#> 53  2.27568485  0.48361356  1.00316205  1.23118055  2.95394186
#> 54 -0.04688776  3.67819315  0.12479238  0.37056467 -0.79987173
#> 55  2.19606702 -0.48970482 -0.13789391  2.08529626  0.89807211
#> 56  1.81679883  1.05969581  0.12193681  0.33935418  1.90432320
#> 57  0.52103340  0.98634290 -0.23184091  0.27824269  2.04921417
#> 58  0.41153939  0.02145690  0.65287291  1.56549907  1.44082486
#> 59  1.39110975  1.77920914  1.86562677  1.44530804  3.93591730
#> 60  1.47315035  2.00547855 -0.82146488  1.61267604 -0.66494640
#> 61  0.54688679  1.16981226  0.62379285  0.85495612  1.12991283
#> 62  0.87252244  0.31874027  3.15838990  1.72965561  0.51670322
#> 63  2.34694113  0.43107677  0.90353409  1.19591266  2.16167881
#> 64  1.59131543  0.01868282  1.08434945  0.31079101  1.68938236
#> 65  1.32637123 -0.52995077  2.14050509  0.10100857  1.38200514
#> 66  1.35151839 -0.89544284  3.01686481 -0.24661791  3.00677129
#> 67 -1.72173507  1.00690779  1.51823111  0.23330553  2.24764083
#> 68 -0.51274392  2.28109127  2.38252496  1.74700846  0.70127033
#> 69  1.04021564 -0.02291424 -1.22120021  2.69972293  1.42455172
#> 70 -0.71784825  1.01175988  0.68387929  0.67331275  0.07808633
#> 71  0.78526596  0.62858423  2.57948024 -0.46360508 -0.27906183
#> 72  0.80541967  0.63402075  0.33676302  1.53220604  0.61992347
#> 73  2.50821774  0.86671401  2.10322702  1.36935852  1.45239553
#> 74  1.85406484  0.63983599 -0.17100972  1.23896496  0.62001881
#> 75  1.70833614  1.26889896  0.79756314  1.34567917  0.91847009
#> 76  2.13401625  0.38806393  1.20918533 -1.38776611  0.04454325
#> 77  2.85698723  1.05960047  2.15901204  1.21242756  1.13071180
#> 78  2.19332437  1.07756764  0.23518878  1.35240629  0.89069058
#> 79  1.64040648  0.18655019  0.06948791 -0.31142217  1.25588509
#> 80  0.80283431  0.70677923  2.27564272  2.58733337 -0.10263718
#> 
#> $Input_Data$Actual_Test
#>  [1]  1.07920317  0.96931102  1.73325205 -0.47410753  0.94508983  0.84511079
#>  [7] -0.39175260  1.30957807  0.01821672  1.30593031  0.72810676 -0.34879933
#> [13] -0.23721267  0.48875874 -0.30467485 -2.28620298  0.22212410  2.40701415
#> [19]  0.06481441  0.56561648
#> 
#> $Input_Data$Forecasts_Test
#>           Series 1     Series 2    Series 3   Series 4   Series 5    Series 6
#>  [1,]  1.984272347  0.794773868 -0.54015484  0.7250048  1.4622399  1.89279736
#>  [2,]  0.851731723  0.563581776  0.13426273  1.1676041  1.0179238 -0.31745893
#>  [3,]  1.732314401  1.129545811  2.65635708  2.6594422  2.0339228  1.91299488
#>  [4,]  0.454453529  1.219449923 -0.04809555  1.3317109  0.7721481  1.44789205
#>  [5,]  0.649160585  2.266889027  3.20627387  0.4523562  0.9917039  1.08461088
#>  [6,]  2.420573801  1.498699788  2.24958761 -0.3132371  1.1227509  2.27895661
#>  [7,] -0.471834409  0.748986302  1.38226280  2.6683100  1.4408438  0.94082288
#>  [8,]  0.514075927  0.434876791  0.59561271  1.5357740  1.2784780  2.05983277
#>  [9,] -0.138952099  0.262255178  0.62670243  0.4617262  0.6916118  2.01786716
#> [10,]  0.977416164 -0.234632021  0.99381375  1.1811973 -0.4942440 -0.13207168
#> [11,]  0.297894946  2.739732557  0.27833893 -0.5643136  1.5833295  0.17056546
#> [12,]  0.779305155  0.540085154  1.24531348  1.1596313  2.2432492  0.25215397
#> [13,] -0.007125624  2.142645849  0.06367109  1.8406637  0.1617341  0.48938226
#> [14,]  1.453441611  1.866260418  1.19268557 -0.2106703  0.8030320 -0.70134046
#> [15,]  1.221838843  3.350539729  0.15891917  1.4221186  1.0278114  0.73627308
#> [16,]  1.193158404 -0.268983703  1.87936589  0.5067160  1.4897679  0.04707730
#> [17,]  0.338735658  0.018357106 -0.19420016  2.8498748 -0.1422574 -0.69178973
#> [18,]  1.165049917  0.273525057  0.17627604 -1.1859222  0.4932551 -0.02785455
#> [19,]  0.590124302 -0.008209334  1.98382686  2.0643086  0.5049323  0.78510630
#> [20,]  1.336731248  1.096160317  2.56604591  2.3477264  1.9847252 -0.61418763
#>          Series 7   Series 8   Series 9    Series 10
#>  [1,]  2.11020893  3.1337818 -0.9376121  0.292617966
#>  [2,]  0.25687950  1.3513524  0.2744438  0.189390411
#>  [3,]  0.75459301  1.4840987  1.5542175  0.901185544
#>  [4,]  0.89884004  0.4272724 -0.5103968  2.280283150
#>  [5,]  0.43233703 -0.1826533  1.4684864  2.097768540
#>  [6,]  0.79596281  1.3317818  1.1851125  0.785521368
#>  [7,]  0.71508369  0.8974147  0.1655054  1.519372269
#>  [8,]  1.96279351  2.5461030  0.4282508  2.009634496
#>  [9,]  1.31991054  0.6226223  1.2484283  2.673305166
#> [10,]  1.89192678  2.3868910  2.1213590  1.233097269
#> [11,] -0.30548479  0.6441404  1.9465880 -0.895011724
#> [12,]  0.99088793  0.1423767  1.4886162  2.035629695
#> [13,]  0.08189045  1.8914055  1.2038098 -1.527954719
#> [14,]  1.07327356  1.6954669  0.7343370  1.150991392
#> [15,]  1.86261842  3.4882202  2.2722534  1.476441181
#> [16,]  0.47839400  1.4602865  1.7296138  0.001524042
#> [17,]  0.68839009  1.4541595  1.9877548  2.088733438
#> [18,]  1.86585404  2.5515230 -0.7269225  0.929403183
#> [19,]  0.48945335  2.9685234  2.1755825  2.200515874
#> [20,]  0.23268610  1.3086785  2.1752767 -0.357645995
#> 
#> 
#> $Predict
#> function (x, newpreds) 
#> {
#>     pred <- as.vector(as.vector(x$Intercept) + newpreds %*% x$Weights)
#>     return(pred)
#> }
#> <bytecode: 0x56048b16e578>
#> <environment: namespace:ForecastComb>
#> 
#> $Intercept
#> [1] -0.8534763
#> 
#> $Weights
#>  [1] 0.1343898 0.0000000 0.1252685 0.1318725 0.1020282 0.1137443 0.0000000
#>  [8] 0.1293228 0.1410618 0.1223121
#> 
#> $Forecasts_Test
#>  [1]  0.11441705 -0.26383180  1.00929832 -0.11717587  0.35972125  0.52157228
#>  [7]  0.18740498  0.49296493  0.15093229  0.25143501 -0.42362722  0.29511368
#> [13] -0.30403312 -0.07073638  0.65900604  0.19948934  0.17426754 -0.44295022
#> [19]  0.84732467  0.52219533
#> 
#> $Accuracy_Test
#>                 ME     RMSE       MAE       MPE    MAPE
#> Test set 0.2238294 1.085977 0.8182896 -10.46356 185.938
#> 
#> $Top_Predictors
#> [1] 8
#> 
#> $Ranking
#>  [1]  7  9  8  4  1  2 10  6  3  5
#> 
#> attr(,"class")
#> [1] "foreccomb_res"