geom_boxplot2.Rd
The boxplot compactly displays the distribution of a continuous variable. It visualises five summary statistics (the median, two hinges and two whiskers), and all "outlying" points individually.
geom_boxplot2(
mapping = NULL,
data = NULL,
stat = "boxplot",
position = "dodge2",
...,
outlier.colour = NULL,
outlier.color = NULL,
outlier.fill = NULL,
outlier.shape = 19,
outlier.size = 1.5,
outlier.stroke = 0.5,
outlier.alpha = NULL,
show.errorbar = TRUE,
width.errorbar = 0.7,
notch = FALSE,
notchwidth = 0.5,
varwidth = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
Set of aesthetic mappings created by aes()
. If specified and
inherit.aes = TRUE
(the default), it is combined with the default mapping
at the top level of the plot. You must supply mapping
if there is no plot
mapping.
The data to be displayed in this layer. There are three options:
If NULL
, the default, the data is inherited from the plot
data as specified in the call to ggplot()
.
A data.frame
, or other object, will override the plot
data. All objects will be fortified to produce a data frame. See
fortify()
for which variables will be created.
A function
will be called with a single argument,
the plot data. The return value must be a data.frame
, and
will be used as the layer data. A function
can be created
from a formula
(e.g. ~ head(.x, 10)
).
the statistical transformation to use on the data for this layer
A position adjustment to use on the data for this layer. This
can be used in various ways, including to prevent overplotting and
improving the display. The position
argument accepts the following:
The result of calling a position function, such as position_jitter()
.
This method allows for passing extra arguments to the position.
A string naming the position adjustment. To give the position as a
string, strip the function name of the position_
prefix. For example,
to use position_jitter()
, give the position as "jitter"
.
For more information and other ways to specify the position, see the layer position documentation.
Other arguments passed on to layer()
's params
argument. These
arguments broadly fall into one of 4 categories below. Notably, further
arguments to the position
argument, or aesthetics that are required
can not be passed through ...
. Unknown arguments that are not part
of the 4 categories below are ignored.
Static aesthetics that are not mapped to a scale, but are at a fixed
value and apply to the layer as a whole. For example, colour = "red"
or linewidth = 3
. The geom's documentation has an Aesthetics
section that lists the available options. The 'required' aesthetics
cannot be passed on to the params
. Please note that while passing
unmapped aesthetics as vectors is technically possible, the order and
required length is not guaranteed to be parallel to the input data.
When constructing a layer using
a stat_*()
function, the ...
argument can be used to pass on
parameters to the geom
part of the layer. An example of this is
stat_density(geom = "area", outline.type = "both")
. The geom's
documentation lists which parameters it can accept.
Inversely, when constructing a layer using a
geom_*()
function, the ...
argument can be used to pass on parameters
to the stat
part of the layer. An example of this is
geom_area(stat = "density", adjust = 0.5)
. The stat's documentation
lists which parameters it can accept.
The key_glyph
argument of layer()
may also be passed on through
...
. This can be one of the functions described as
key glyphs, to change the display of the layer in the legend.
Default aesthetics for outliers. Set to NULL
to inherit from the
aesthetics used for the box.
In the unlikely event you specify both US and UK spellings of colour, the US spelling will take precedence.
whether to show errorbar (default TRUE)
the width of errorbar (default 0.7)
If FALSE
(default) make a standard box plot. If
TRUE
, make a notched box plot. Notches are used to compare groups;
if the notches of two boxes do not overlap, this suggests that the medians
are significantly different.
For a notched box plot, width of the notch relative to
the body (defaults to notchwidth = 0.5
).
If FALSE
(default) make a standard box plot. If
TRUE
, boxes are drawn with widths proportional to the
square-roots of the number of observations in the groups (possibly
weighted, using the weight
aesthetic).
If FALSE
, the default, missing values are removed with
a warning. If TRUE
, missing values are silently removed.
logical. Should this layer be included in the legends?
NA
, the default, includes if any aesthetics are mapped.
FALSE
never includes, and TRUE
always includes.
It can also be a named logical vector to finely select the aesthetics to
display.
If FALSE
, overrides the default aesthetics,
rather than combining with them. This is most useful for helper functions
that define both data and aesthetics and shouldn't inherit behaviour from
the default plot specification, e.g. borders()
.
geom_boxplot()
understands the following aesthetics (required aesthetics are in bold):
lower
or xlower
upper
or xupper
middle
or xmiddle
weight
Learn more about setting these aesthetics in vignette("ggplot2-specs")
.
The lower and upper hinges correspond to the first and third quartiles
(the 25th and 75th percentiles). This differs slightly from the method used
by the boxplot()
function, and may be apparent with small samples.
See boxplot.stats()
for more information on how hinge
positions are calculated for boxplot()
.
The upper whisker extends from the hinge to the largest value no further than 1.5 * IQR from the hinge (where IQR is the inter-quartile range, or distance between the first and third quartiles). The lower whisker extends from the hinge to the smallest value at most 1.5 * IQR of the hinge. Data beyond the end of the whiskers are called "outlying" points and are plotted individually.
In a notched box plot, the notches extend 1.58 * IQR / sqrt(n)
.
This gives a roughly 95% confidence interval for comparing medians.
See McGill et al. (1978) for more details.
McGill, R., Tukey, J. W. and Larsen, W. A. (1978) Variations of box plots. The American Statistician 32, 12-16.
geom_quantile()
for continuous x
,
geom_violin()
for a richer display of the distribution, and
geom_jitter()
for a useful technique for small data.
library(ggplot2)
p <- ggplot(mpg, aes(class, hwy))
p + geom_boxplot2()
p + geom_boxplot2(width.errorbar = 0.5)
p + geom_boxplot2(width = 0.5)
# Orientation follows the discrete axis
# ggplot(mpg, aes(hwy, class)) + geom_boxplot2()
p + geom_boxplot2(notch = TRUE)
#> Notch went outside hinges
#> ℹ Do you want `notch = FALSE`?
#> Notch went outside hinges
#> ℹ Do you want `notch = FALSE`?
p + geom_boxplot2(varwidth = TRUE)
p + geom_boxplot2(fill = "white", colour = "#3366FF")
# By default, outlier points match the colour of the box. Use
# outlier.colour to override
p + geom_boxplot2(outlier.colour = "red", outlier.shape = 1)
# Remove outliers when overlaying boxplot with original data points
p + geom_boxplot2(outlier.shape = NA) + geom_jitter(width = 0.2)
# Boxplots are automatically dodged when any aesthetic is a factor
p + geom_boxplot2(aes(colour = drv))
# You can also use boxplots with continuous x, as long as you supply
# a grouping variable. cut_width is particularly useful
# ggplot(diamonds, aes(carat, price)) +
# geom_boxplot2()
# ggplot(diamonds, aes(carat, price)) +
# geom_boxplot2(aes(group = cut_width(carat, 0.25)))
# Adjust the transparency of outliers using outlier.alpha
# ggplot(diamonds, aes(carat, price)) +
# geom_boxplot2(aes(group = cut_width(carat, 0.25)), outlier.alpha = 0.1)
# It's possible to draw a boxplot with your own computations if you
# use stat = "identity":
y <- rnorm(100)
df <- data.frame(
x = 1,
y0 = min(y),
y25 = quantile(y, 0.25),
y50 = median(y),
y75 = quantile(y, 0.75),
y100 = max(y)
)
ggplot(df, aes(x)) +
geom_boxplot2(
aes(ymin = y0, lower = y25, middle = y50, upper = y75, ymax = y100),
stat = "identity"
)